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Introduction 
 
In medical image analysis, the automatic segmentation is an important and challenging problem for 
the diagnosis and monitoring of different diseases. The objective of image segmentation is to 
separate objects of interest from a given image based on different attributes such as shape, colour, 
intensity or texture. In recent years, several methods have been proposed for this purpose such as 
adaptive local multi-atlas in human heart [1], suppressed fuzzy c-means in brain magnetic 
resonance images [2], improved watershed transform in mammograms [3], graph cut in multiple 
human organs [4, 5], rule optimization with region growing in pelvic injuries [6] and active contour 
models (ACM) in human prostate [7], lungs from magnetic resonance images of the torso [8] and 
intravascular ultrasound images [9], to name a few. 
 
The Active Contour Model was introduced by Kass et al. [10] and it is an energy-minimizing spline 
curve composed of control points also known as snaxels. This spline evolves through evaluation of 
internal and external forces being attracted towards features as edges of a target object. The 
classical implementation of ACM presents the shortcomings of sensitivity to initial positioning of 
the control points, which must be close to the target object and the propensity to be trapped into 
local minima. To solve these drawbacks different improvements have been proposed to adapt 
diverse methods working together with ACM such as Finite-element [11], graph cut [12], statistical 
methods [13, 14] and population-based methods including Genetic algorithms [15, 16], Differential 
Evolution (DE) [17], Estimation of Distribution Algorithms (EDAs) [18] and Particle Swarm 
Optimization (PSO) [19, 20, 21]. The use of population-based methods working together with the 
classical ACM becomes more stable and efficient in the local minima, which is highly suitable for 
medical image segmentation problems. 
 
Population-based methods are an effective way to solve different optimization problems. Three of 
the most popular methods are the PSO, DE and EDAs because of their robustness in local minima 
and efficiency solving global optimization problems with nondifferentiable functions. Since these 
techniques are not computationally demanding and highly efficient, they have been used in many 
real-world applications including, tumour classification [22], cancer chemotherapy optimization 
[23] and parameter estimation in human immunodeficiency virus (HIV) [24]. 
 
This chapter introduces novel unsupervised image segmentation methods based on three different 
stochastic optimization techniques. These unsupervised methods use the theory of Active Contour 
Model working together with Differential Evolution, Estimation of Distribution Algorithms and 
Particle Swarm Optimization to perform the segmentation task. These methods are explored and 
applied in the segmentation of white blood cells (leukocytes) from microscope images and for 
segmentation of the human heart from Computed Tomography images, where the human heart 
results are evaluated using the Jaccard and Dice indexes with respect to regions outlined by 
experts. 
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Image segmentation and optimization methods 
 
This section introduces the basis of the Active Contour Model for image segmentation, and the 
fundamentals of the stochastic optimization methods of Differential Evolution, Estimation of 
Distribution Algorithms and Particle Swarm Optimization. 
 
Active Contour Models (ACM) 
 
The classical Active Contour Model, also called snake, is represented by a parametric curve which 
can move within the spatial domain of an image where it was assigned [10]. This parametric curve 

is defined by p(s, t) = (x(s, t), y(s, t)), s  [0, 1], where t is the time parameter whereby the curve 
evolves to minimize the total energy function given by Equation (1). 
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This energy function has two components, the internal energy ܧ௧ and the external energy ܧ௫௧. 
Internal energy is presented in Equation (2), which is used to maintain the search within the spatial 
image domain, and to control the shape modification of the parametric curve using the first and 
second derivatives of p(s), the curve tension parameter α(s) and the rigidity parameter β(s). 
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The external energy defined by Equation (3) is given by the particular features of the image, where 
 is a weight parameter. The optimal ߛ is the surface gradient computed at p(s) and ((ݏ))ࡵࢺ
solution is acquired by solving the Euler equation (Equation (4)), when both external and internal 
energies become stable. 
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In the computational implementation of the traditional ACM, the parametric curve is composed by 
a set of n control points { | ݅ = 1,2, … , ݊}, also called snaxels. The internal and external energies 
are approximated by Equation (5) and Equation (6) respectively. In both energies ݍ, represents the 
current control point  in the ݆ index within its searching window. Accordingly, the local energy 
function given by Equation (7) is iteratively evaluated to minimize the ݇ index by using Equation 
(8), where ܹ is the predefined searching window for the control point  [21]. 
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This classical ACM implementation presents two main weaknesses. Firstly, sensitivity to the initial 
position of the control points which must be close to target object otherwise failure of convergence 
will occur; secondly, these control points are prone to be trapped into local minima problem 
deflecting the parametric curve of the optimum edge. A suitable alternative to overcome the 
aforementioned drawbacks is to use robust stochastic optimization methods. In our experiments, 
three different population-based methods were used, which are described in the following Section 
2.2. 
 
The ACM Algorithm in General 
 
According to the previous description in Section 2.1, the classical ACM algorithm can be 
implemented by using the procedure in Box 1. 
 

1. Initialize the control points { | ݅ = 1,2, … , ݊} 
2. For each control point : 
3. Calculate ܧ, in searching window ܹ using Equation (7)  
4. Find the best index ݇ according to Equation (8) 
5. Set ܲ =  ,ݍ 
6. Compute ܧ௦ 
7. If ܧ௦ becomes stable, then stop, otherwise repeat steps (2) to (7) 

 
BOX 1  
Algorithm of Active Contour Model 
 
Stochastic Optimization Methods 
 
Stochastic Optimization methods are used to solve numerical optimization problems based on 
different strategies. In this work, we focus on Differential Evolution, Estimation of Distribution 
Algorithms and Particle Swarm Optimization. 
 
Particle Swarm Optimization (PSO) 
 
Particle Swarm Optimization is a computational intelligence technique proposed by Eberhart et al. 
[25] and improved by [26] to solve numerical optimization problems. Similar to evolutionary 
techniques, PSO uses a set also called swarm of potential solutions referred to as particles to 
perform the optimization task. Each particle represents a solution in an N-dimensional space 
ࢄ = ,ଶݔ,ଵݔ} …  ே}, which moves through hyperspace to a new position according to theݔ,
following velocity equation: 
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where ݒ(ݐ) is the current velocity of the particle ݔ in the time step (ݐ), ߮ is the inertia weight, ݇  
represents the learning factor, ݎଵ , ௦௧ ,ଶ~ ܷ (0,1) where ܷ is a uniform distributionݎ  is the current 
best solution found by ݔ, and ௦௧  is the best solution found by the best particle of the whole 
swarm. Subsequently, assuming that the new velocity of the particle has been updated, Equation 
(10) is used to calculate its new position within the search space. 
 
ݐ)ݔ + 1) = (ݐ)ݔ + ݐ)ݒ + 1) (10) 
 
 
According to the aforementioned description, the PSO algorithm can be implemented by using the 
following procedure. 
 

1. Initialize iterations G, and swarm size ܰ 
2. Initialize each particle ܺ by generating random positions and velocities. 
3. For each particle ܺ,, where  ݃ =  {1,  :{ܩ…
4. Evaluate ܺ,  in fitness function and update its ܲ௦௧ , if the new fitness is better.  
5. Find the best particle in the swarm and update ܲ௦௧ , if the fitness value found is 

better. 
6. Stop if the convergence criterion is satisfied (e.g., stability or number of iterations). 
7. Update velocity of all particles using Equation (9). 
8. Update position of all particles using Equation (10), then repeat steps 3-8. 

 
BOX 2  
Algorithm of Particle Swarm Optimization 
 
Differential Evolution 
 
Differential evolution (DE) is a stochastic real-parameter heuristic from the family of evolutionary 
algorithms proposed by Storn et al. [27, 28] for numerical global optimization problems. DE starts 
with a number ܰ of randomly initialized potential solutions, also known as individuals ܺ =
,ଶݔ,ଵݔ} … ,  ே}. These individuals are iteratively improved through different variation operatorsݔ
and the solution is chosen to be the individual with the best fitness according to an objective 
function. 
 
The main idea of DE method consists of three evolutionary operators: mutation, crossover and 
selection on the floating-point encoding. 
 
Mutation: Creates a mutant vector ܸ ,ାଵ at each generation ݃ based on the distribution of the 
current population { ܺ,|݅ = 1,2, … , ܰ} using the following mutation strategy: 
  

ܸ ,ାଵ = ܺଵ, + ൫ܺଶ,ܨ −ܺଷ,൯,     1ݎ ≠ 2ݎ ≠ 3ݎ ≠ ݅ (11) 
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where ܨ is the differentiation factor also called scaling or mutation factor parameter, and 2ݎ ,1ݎ 
and 3ݎ are the indexes of three individuals mutually different and uniformly randomly selected 
from the set {1, … , ܰ}. 
 
Crossover: This operator is used to create the trial vector ܷ ,ାଵ via the following: 
 

ܷ,ାଵ = ൜ ܸ ,ାଵ, ݎ ݂݅ ≤ ܴܥ
ܺ, , ݎ ݂݅ >  ܴܥ

(12) 

 
where a uniform random value ݎ on the interval (0,1) is generated to be compared with the 
crossover rate parameter ܴܥ. If ݎ is bigger than ܴܥ, the current information of individual ܺ,   is 
preserved, otherwise the values from the mutant vector ܸ ,ାଵ are copied to the trial vector ܷ,ାଵ. 
 
Selection: This operator is applied using Equation (13) to optimization process. It selects according 
to a fitness function, the better one between the current individual ܺ,  and the trial vector ܷ ,ାଵ 
to be used to replace the current individual in the next generation. 
 

ܺ,ାଵ = ൜ ܷ ,ାଵ, ݂݅ ݂( ܷ,ାଵ) < ݂( ܺ,)
ܺ , , ݁ݏ݅ݓݎℎ݁ݐ  

(13) 

 
According to the previous description of the traditional DE algorithm, it is described by using the 
following procedure. 
 

1. Initialize generations G, population size ܰ, differentiation ܨ and crossover rate ܴܥ 
2. Initialize each individual ܺ by generating random candidate solutions 
3. For each individual ܺ,, where  ݃ =  {1,  :{ܩ…
4. Compute ܸ ,ାଵby using the mutation step in Equation (11) 
5. Assign ܷ ,ାଵ according to the crossover operator via Equation (12) 
6. Update ܺ,ାଵ, if ܷ,ାଵ is better than ܺ,  using Equation (13) 
7. If stopping criterion is satisfied (e.g., stability or number of generations), then stop 

 
BOX 3  
Algorithm of Differential Evolution 
 
Estimation of Distribution Algorithms (EDAs) 
 
Estimation of Distribution Algorithms are population-based methods that incorporate statistical 
information to solve optimization problems [29, 30, 31]. EDAs are from the family of evolutionary 
algorithms since they use a population of individuals, selection operators and binary encoding 
replacing the crossover and mutation operators by probabilistic models based on the global 
statistical information inferred from the current solutions. One of EDAs that works perfectly for 
linear problems or problems with not many significant dependencies is the Univariate Marginal 
Distribution Algorithm (UMDA)[32, 33]. This algorithm works on binary strings to infer statistical 
dependencies between the variables using a probability vector  = ,ଶ,ଵ) … ,  )் to construct
the probabilistic model, where  represents the probability of obtaining a 1 in position ݅. UMDA 
approximates the actual probability distribution of the individuals in ℙ௧ using the product of the 
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univariate frequencies computed from the selected population and assuming that all variables are 
independent [34]. The first step of UMDA consists of the selection probability ݏ, which is computed 
using Equation (14) and it is performed after the chromosomes in the search space Ω have been 
sorted according to fitness. 
 

ℙ௦(ݔ) =
ℙ(ݔ)݂(ݔ)

∑ ℙ(̅ݔ)݂(̅ݔ)௫∈Ω
 

(14) 

 
 

In the second step a joint probability  is calculated through the following: 
 

ℙ(ݔ) = ෑℙ( ܺ = (ݔ


ୀଵ

  
(15) 

 
 
where ݔ = ,ଶݔ,ଵݔ) … ,  )் is the binary value of the ݅th bit in the chromosome, and ܺ is the ݅thݔ
component of the random vector ܺ. Finally, the third step of UMDA is used to generate a new 
population of individuals from the probabilistic model, to be evaluated according to a fitness 
function in the next generation. These three steps of UMDA are iteratively performed until the 
termination criteria are satisfied, and the solution is chosen to be the individual with the best 
fitness in the entire population. 
 
Based on the previous description, the UMDA algorithm can be implemented through the following 
procedure: 
 

1. Initialize generations T, population size ܰ. 
2. Initialize each individual ܺ by generating random candidate solutions 
3. For each individual ܺ,௧ , where  t=  {1, …ܶ}: 
4. Select a subpopulation S of individuals according to a selection method. 
5. Compute the univariate marginal probabilities ௦(ݔ ,  .of S (ݐ
6. Generate ݊ new individuals according to ݔ), ݐ + 1) =  ∏ ݔ)௦ , (ݐ

ୀଵ  . 
7. Stop if convergence criterion is satisfied, otherwise, repeat steps (3)-(7). 

 
BOX 4  
Algorithm of the Univariate Marginal Distribution Method 
 
Application of PSO, DE, and UMDA Algorithms 
 
Since the aforementioned algorithms are optimization techniques, they can be applied to minimize 
the following function: 
 
min݂(ݔ) =  ଶ,   [−64,64] (16)ݔ
 
Figure 13.1(a) presents the graph of the function (16), in which the optimization process will be 
explained. The first step in the optimization methods is the initialization of their particular 
parameters followed by generating random potential solutions. These solutions referred as 
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individuals or particles must be initialized within the search space defined by the function. In our 
example, the search space is in the range [-64, 64], and 8 individuals have been randomly 
initialized, as shown in Figure 13.1(b) and Table 13.1. The binary representation used for EDAs has 
7-bits, since the range of the function ([-64, 64]) can be rearranged to establish a new range in [0, 
128]. 
 

 
 

 
 
FIGURE 13.1  
(a) Plot of function ݂(ݔ) =  ଶ and (b) Initialization of potential solutionsݔ 
 
 
TABLE 13.1  
Initialization of potential solutions according to Figure 13.1(b) 
 

individuals Real encoding 
(PSO/DE) 

Binary encoding (EDAs) Fitness 

1 25 1011001 625 
2 48 1110000 2304 
3 18 1010010 324 
4 -50 0001110 2500 
5 -42 0010110 1764 
6 12 1001100 144 
7 35 1100011 1225 
8 -26 0100110 676 

 
While EDAs works on the binary encoding, PSO and DE use real encoding to perform their search 
strategy. The strategy search of each optimization method is applied through iterations over the 
whole set of potential solutions. For instance, PSO uses the velocity and position equations, DE 
works with mutation, crossover and selection operator and UMDA uses selection and univariate 
marginal probabilities. When the optimization process is finished, in general taking into account the 
number of iterations, the optimal solution (Figure 13.2) is chosen to be the individual or particle 
with the best fitness in the whole set of potential solutions. These methods are easy to extend for 
working with ݊-dimensional problems just by modifying their codification, since the search 
strategies have been proven to be robust and efficient in different applications [23, 24, 35]. In 
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order to adapt the codification presented in Table 13.1 and extending the function (16) to two-
dimensions (function (17)), in the following Table 13.2 and Figure 13.3 the adaptation is illustrated. 
 
 

 
 
FIGURE 13.2  
Optimal solution of function (16) 
 
 

 

 
min݂(ݔ, (ݕ = ଶݔ +  ଶ,   [−64,64] (17)ݕ

 
 

 

TABLE 13.2  
Adaptation of potential solutions to minimize the function 17 shown in Figure 13.3 
 

 Real encoding Binary encoding  
Individual X-axis Y-axis X-axis Y-axis Fitness 
1 25 3 1011001 1000011 634 
2 48 21 1110000 1010101 2745 
3 18 -10 1010010 0110110 424 
4 -50 -32 0001110 0100000 3524 
5 -42 46 0010110 1101110 3880 
6 12 -50 1001100 0001110 2644 
7 35 -20 1100011 0101100 1625 
8 -26 -2 0100110 0111110 680 
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FIGURE 13.3  
Surface of spherical function ݂(ݔ, (ݕ = ଶݔ  +  ଶݕ
 
In the following Section 3, two medical image segmentation frameworks based on different 
strategies working together with the optimization methods described above, are explained in 
detail. 
 
 

Proposed Medical Image Segmentation Methods 
 
The first method uses constrained polar sections to perform the segmentation process. These 
constrained sections make it possible to adapt different optimization methods preserving their 
original search strategies as it is described in Section 3.1. The second method uses the maximum 
Euclidean distance between potential solutions to perform the segmentation task. The search is not 
constrained via polar sections; instead, Euclidean distance is used as it is illustrated in Section 3.3. 
 
Segmentation through Constrained Polar Sections (CPS) 
 
In this method, different optimization techniques can be adopted without any modification for 
guiding the convergence of multiple active contours on a polar coordinate system to perform the 
segmentation task [36, 37]. Due to the local minima disadvantage of the traditional ACM discussed 
above, this method uses population-based techniques to solve it. Since the methodology makes it 
possible to apply the traditional implementation of the optimization techniques, the advantages of 
robustness, low computational time and efficiency are inherently acquired. The procedure of the 
segmentation method is illustrated below in Figure 13.4, which consists of the Preprocessing, 
Initialization and Segmentation steps.  
 
In the preprocessing stage, we remove noise from the image by using a 2-D median filter (3x3 
window size), followed by the Canny edge detector to separate the regions of interest from the 
background. The last step in this stage is to produce the Euclidean Distance Map, where low 
potential values (ideally zero) are assigned to pixels located close to the target object and high 
potential values to pixels far from the object [11]. 
 
In the initialization stage, a polar coordinate system on the Distance Map is generated via an 
interactively determined seed point composed by the ࢞ and ࢟ coordinates. This coordinate system 
divides the target object through ߠ = ൗ݃ߨ2  , where ݃ denotes the degrees of each constrained 
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polar section ܵ, in which one edge sectional solution must exist. Subsequently, the object of 
interest has to be confined by the spatial domain of the ݊ initial contours, which can be generated 
in a circular or elliptical shape according to the pattern of the object. After the ݊ contours are 
produced, ݊ equidistant control points (snaxels) are generated and assigned as potential solutions 
(individuals or particles) to conform one population ܱ for each polar section ܵ. The third stage 
represents the segmentation process, where for section ܵ, the optimization method is applied 
individually to minimize the corresponding edge sectional solution. Once the optimization process 
is finished, the final segmented object is acquired by connecting the best solution of each polar 
section to each other. 
 
The proposed method presents the following advantages on the initialization process. Firstly, the 
initial contours can be easily defined in different shapes according to the pattern of the target 
object. Secondly, the number of control points (snaxels) per contour, can be modified according to 
the number of polar sections in which the target object is divided. The last feature is the seed point, 
which is used to generate all the snaxels automatically on the constrained spatial domain of the 
object of interest allowing extend the present method to work with sequential images just 
reproducing the origin point through the set of images. 
 
Since the segmentation results directly depend from the appropriate parameters selection of the 
presented method, they are individually described in the following Section. 
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FIGURE 13.4  
Workflow of the Constrained Polar Sections method, consisting on the steps of preprocessing of medical 
image, initialization of evolutionary methods, and segmentation process through numerical optimization. 
Reproduced with permission from I. Cruz-Aceves, J. G. Avina-Cervantes, J. M. Lopez-Hernandez, et al., 
“Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation”, 
Computational and Mathematical Methods in Medicine, Volume 2013, Article ID 190304, 14 pages. 
©Hindawi Publishing Corporation 
 
Pseudocode and Parameter Selection 
 
In this section, the procedure as pseudocode and the parameters description of the image 
segmentation method based on constrained polar sections are described as follows: 
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1. Initialize coordinates (ݕ,ݔ) from the origin point, degrees ݃ and number of snakes. 
2. Initialize parameters of optimization method such as number of iterations and 

population size. 
3. Generate one population or swarm ܱ for each polar section ܵ. 
4. For each population or swarm ܱ: 
5. Apply restriction of the search space to ignore improper solutions. 
6. Perform the particular search strategy of the optimization method. 
7. Stop if convergence criterion is satisfied, otherwise, repeat steps (4)-(7). 

 
BOX 5  
Algorithm of the method based on Constrained Polar Sections 
 
The parameters play an essential role in the success of any optimization algorithm. In our approach, 
the parameters have been experimentally tuned taking into account the number of different 
potential solutions generated through the iterations, and also by considering the number of 
improper solutions to perform local exploitation instead exploration. 
 
Preprocessing step: These parameters have been experimentally tuned to preserve the real edges 
in the image, since these can affect the segmentation result. Particularly, the parameters in the 
Canny edge detector were used as ߪ = 1.3, ܶ = 10.0 and ܶ = 30.0. 
 
Degrees: This parameter ݃ represents the degrees of each constrained polar section ܵ. In our 
experiments ݃ was statistically tuned in the range [13, 16] degrees, since the relation between 
computational time and segmentation results is suitable. 
 
Number of snakes: It has to be defined assuming that the target object is confined within the 
region of the initial snakes. According to the human heart segmentation experiments, the number 
of snakes was set experimentally between 12 and 15 contours. 
 
Number of snaxels: It depends of the relation 2ߨൗ݃ . The number of snaxels of each snake 
determines the number of polar sections in which the target object is divided. 
 
Seed point: This seed point is created interactively by the user, and it is composed by the ݔ and ݕ 
coordinates of the pixel where it was assigned. 
 
Iterations: In experiments no more than 10 or 20 iterations are required to become stable, since 
the segmentation problem is reduced to minimize constrained polar sections, which are generally 
unimodal, computed through the distance map. 
 
The constant parameters in this method are suitable for other medical images, taking into account 
that the optimization techniques are directly applied to minimize one edge sectional solution for 
each polar area. 
 
 
 
 



Nanomedicine  347 

Segmentation by using Maximum Euclidean Distance (MED) 
 
In this method, the Maximum Euclidean Distance is used instead the Constrained Polar Sections to 
perform the segmentation task. The key aspect of the method is illustrated below in Figure 13.5, 
which consists on the incorporation of the ݔܽ݉ܦ parameter. 
 
 
 

 
 
FIGURE 13.5  
Incorporation of ݔܽ݉ܦ in the Maximum Euclidean Distance method 
 
This method also makes it possible to apply different meta-heuristics directly in the segmentation 
process. The preprocessing step is similar to the process carried out by the method of polar 
sections, since we first remove noise from the image followed by an edge detection between the 
background and the target object, and finally compute the Euclidean distance map. The 
initialization step is different because the polar sections are replaced by the ݔܽ݉ܦ parameter, 
which is used to keep the search of the control points within the search space in order to minimize 
the closest edge solution. The ݔܽ݉ܦ parameter is initialized by the user in terms of pixel 
separation between control points, and it is iteratively evaluated using Equation (18) (Euclidean 
distance) as follows: 
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݁ܿ݊ܽݐݏ݅ܦ = ඩ( − )ଶݍ


ୀଵ

 

(18) 

 
The third step of this method involves the numerical optimization and the segmentation result. The 
numerical optimization is performed on the intensity of the Euclidean distance map, which is used 
as fitness function. The optimization technique is applied for each population separately in order to 
be placed on the closest edge solution keeping ݔܽ݉ܦ between best potential solutions. Finally, 
when the optimization process for each set of solutions is finished, the resulting segmented object 
is acquired by connecting the best individual of each set to each other. 
 
The procedure of the image segmentation method based on the Maximum Euclidean Distance is 
described as follows: 
 

1. Initialize coordinates (ݕ,ݔ) from the origin point, ݔܽ݉ܦ parameter. 
2. Initialize number ݊ of active contours and number ݉ of control points. 
3. Initialize parameters of optimization method such as iterations and population size. 
4. Generate one population or swarm ܱ.  
5. For each population or swarm ܱ: 
6. Apply restriction of the search space to ignore improper solutions. 
7. Perform the particular search strategy of the optimization method. 
8. Stop if convergence criterion is satisfied, otherwise, repeat steps (5)-(8). 

 
BOX 6  
Algorithm of the method based on Maximum Euclidean Distance 
 
 

Computational Experiments 
 
In this section, the abovementioned methods are applied in the segmentation of human heart on 
Computed Tomography images and white blood cells on microscope images.  
 
Application to Human Heart on Computed Tomography Images 
 
We have applied the Constrained Polar Sections method on a dataset composed of 144 Computed 
Tomography (CT) images (size 512 x 512 pixels) from different patients. In Figure 13.6 the human 
heart segmentation results on a subset of CT images are illustrated. Figure 13.6(a) presents the 
original test images of the subset in order to increase the human perception of the segmentation 
task. In Figure 13.6(b) the manual delineations of the human heart made by experts are presented. 
Figure 13.6(c) shows the segmentation results obtained through the traditional implementation of 
the Active Contour Model, where the fitting problem leads to an inaccurate convergence to heart 
boundary. The ACM parameters used in this simulation were set as 45 control points, ߚ ,0.017 = ߙ = 
0.86 and 0.45 = ߛ, according to similar tests reported in [21]. Figures 6(d), 6(e) and 6(f) illustrate the 
segmentation results obtained via the CPS method using the UMDA, PSO and DE strategies, 
respectively. The general parameters were set as number of contours = 9, number of control points 
= 45 and generations = 10. The results obtained with the CPS method are in general more accurate 
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than the results obtained with the classical ACM, since it fit to the real human heart boundary 
accurately avoiding the local minima problem. 

(a) 

 
 
(b) 

 
 
(c) 

 
 
(d) 

 
 
(e) 

 
 
 (f) 

 
 
FIGURE 13.6  
Human heart segmentation on CT images. (a) Test images, (b) Delineation by experts, (c) Segmentation 
results using the classical ACM implementation, (d) Segmentation results using UMDA, (e) Segmentation 
results using PSO, and (f) Segmentation results using DE 
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From the abovementioned dataset of CT images, in Table 13.3 a comparative analysis using the 
average of the segmentation results obtained from computational methods and the regions 
outlined by experts is introduced. The similarity measures used for this analysis are the Jaccard and 
Dice indexes, which evaluate the segmentation result in terms of overlapping regions and they are 
situated in the range [0, 1], according to [3]. This comparative analysis suggests that the CPS 
method using different optimization strategies can lead to more efficiency in human heart 
segmentation regarding the traditional Active Contour Model, which can be significantly help 
cardiologists in clinical practice. 
 
TABLE 13.3  
Average similarity measure among the regions segmented by ACM, and the constrained polar sections 
framework via UMDA, PSO and DE compared to those regions outlined by expert from the set of CT images 
 

Comparative 
Studies 

Similarity Measure 
Jaccard index (J) Dice index (D) 

ACM vs Expert 0.5272 0.6904 
UMDA vs Expert 0.7142 0.8333 
PSO vs Expert 0.8260 0.9047 
DE vs Expert 0.8666 0.9285 

 
 
The use of optimization strategies in the CPS method provides robustness, accuracy and stability in 
the local minima problem, improving the segmentation accuracy. As shown in similarity analysis, 
the CPS method is able to detect the human heart with a high accuracy and effectiveness, which 
can help cardiologists to better analyze the medical images and increase their monitoring abilities. 
 
Application to White Blood Cells on Microscope Images 
 
The Maximum Euclidean Distance method is applied in the segmentation of white blood cells (also 
called leukocytes) on microscope images. The experimental data set includes images with one and 
two leukocytes to be detected, which are collected from the ALL-IDB database [38, 39] 
(http://homes.di.unimi.it/scotti/all/). 
 
We can apply the MED method in different ways; for instance, by using the preprocessing 
procedure for the CPS method, or adopting techniques such as the Generalized Hough Transform 
[40] to detect circles avoiding the interactive seed point just applying a slight adaptation as in [41, 
42]. This preprocessing step uses a binarization of the test image to separate the target objects 
from the background image, followed by applying the Sobel edge detector to introduce just the 
boundary pixels to the Generalized Hough Transform in order to detect the most promising circles 
close to the leukocytes. Finally, when the circle of the object of interest is detected, we can use the 
MED method to generate the potential solutions around this circle to adapt it to the shape of the 
target leukocyte. 
 
In Figure 13.7, the preprocessing steps for the segmentation of white blood cells are illustrated. 
Figure 13.7(a) presents the test microscope images; Figure 13.7(b) shows the edge detection results 
using the Sobel operator. From the edge detection procedure, the Generalized Hough Transform is 
able to detect circular shapes (target leukocyte) in the image as it is shown in Figure 13.7(c). This 
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circle represents the input for the MED method generating multiple concentric circles as potential 
solutions. The best contour solution found by the method represents the final segmentation result. 
This MED method shows a high accuracy segmentation locating the edge of the white blood cells as 
it is illustrated in Figure 13.7(d).  
 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
 
FIGURE 13.7  
White blood cells segmentation. (a) Test images, (b) Edge detection, (c) Circle detection using Hough 
transform and (d) Segmentation results using the MED method 
 
The aforementioned procedure to detect one leukocyte can be applied to detect multiple 
leukocytes in an image as it is shown in Figure 13.8(a) and (b), respectively. The procedure only 
depends on the number of circles which are detected by the Generalized Hough Transform. 
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(a) 

 
 
(b) 

 
 
FIGURE 13.8  
(a) and (b) Multiple white blood cells segmentation using the procedure illustrated in Figure 13.7 
 
 
The segmentation results acquired by the CPS and MED methods show their flexibility to be applied 
in different problems in medical image segmentation only by using different preprocessing steps. 
Also, these methods are easy to adapt for working with different population-based methods, since 
the methodologies allow preserving the original implementation of the optimization techniques. 
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Concluding Remarks 
 
In this chapter, we have presented two different frameworks based on the theory of active contour 
models for medical image segmentation. The first framework through an interactive initialization 
divides the target object in polar sections, in order to avoid the local minima and the sensitivity to 
initial positioning problems regarding the classical implementation of the Active Contour Model. 
This framework was applied in the human heart segmentation on Computed Tomography images 
using different optimization strategies such as Estimation of Distribution Algorithms, Particle 
Swarm Optimization and Differential Evolution. Moreover, the second framework involves a 
distance parameter between potential solutions instead the constrained polar sections, and it also 
introduces the Generalized Hough Transform to avoid the interactive seed point to perform the 
segmentation task. This second framework was applied in the white blood cells segmentation 
problem on microscope images. The experimental results revealed that by using optimization 
techniques as strategy search in both frameworks, it is possible to attain high accuracy, robustness 
and efficiency in the human heart and leukocytes segmentation. Finally, the experimental results 
have also shown that these frameworks are appropriate and efficient to be used in different 
medical segmentation problems, which is very useful for clinical decision support applications. 
 
 

Acknowledgements 
 
This work has been supported by the National Council of Science and Technology of México 
(CONACYT) under Grant 241224-218157. The authors wish to thank to the cardiology department 
of the Mexican Social Security Institute, UMAE T1 León for the precious clinical advice and for 
kindly providing us the sources of cardiac CT images. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Nanomedicine  354 

References 
 

1. van Rikxoort EM, Isgum I, Arzhaeva Y, Staring M, Klein S, Viergever MA, et al. Adaptive 
local multi-atlas segmentation: Application to the heart and the caudate nucleus. Medical 
image analysis. 2010 Feb, 14(1):39–49. 

2. Nyma A, Kang M, Kwon YK, Kim CH, Kim JM. A Hybrid Technique for Medical Image 
Segmentation. Journal of Biomedicine and Biotechnology. 2012, 2012(830252):7. 

3. Hsu WY. Improved watershed transform for tumor segmentation: Application to 
mammogram image compresion. Expert Systems with Applications. 2012, 39:3950–3955. 

4. Boykov Y, Jolly MP. Interactive Organ Segmentation using Graph Cuts. Proceedings of 
Medical Image Computing and Computer-Assisted Intervention. 2000, p. 276–286. 

5. Schmidt FR, Toppe E, Cremers D. Efficient Planar Graph Cuts with Applications in Computer 
Vision. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 
2009. 

6. Davuluri P, Wu J, Tang Y, et al. Hemorrhage Detection and Segmentation in Traumatic 
Pelvic Injuries. Computational and Mathematical Methods in Medicine. 2012, 
2012(898430):12. 

7. Liu X, Haider MA, Yetik IS. Unsupervised 3D Prostate Segmentation Based on Diffusion-
Weighted Imaging MRI Using Active Contour Models with a Shape Prior. Journal of 
Electrical and Computer Engineering. 2011, 2011(410912):11. 

8. Middleton I, Damper RI. Segmentation of magnetic resonance images using a combination 
of neural networks and active contour models. Medical Engineering & Physics. 2004 Jan, 
26(1):71–86. 

9. Zhu X, Zhang P, Shao J, Cheng Y, Zhang Y, Bai J. A snake-based method for segmentation of 
intravascular ultrasound images and its in vivo validation. Ultrasonics. 2011, 51:181–189. 

10. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of 
Computer Vision. 1988, 1:321–331. 

11. Cohen LD, Cohen I. Finite-Element Methods for Active Contour Models and Balloons for 2-
D and 3-D Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1993 
Nov, 15(11):1131–1147. 

12. Chen X, Udupa JK, Bagci U, Zhuge Y, Yao J. Medical Image Segmentation by Combining 
Graph Cuts and Oriented Active Appearance Models. IEEE Transactions on Image 
Processing. 2012, 21(4):2035–2046. 

13. Wang L, He L, Mishra A, Li C. Active contours driven by local Gaussian distribution fitting 
energy. Signal Processing. 2009, 89:2435–2447. 

14. Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J. Probability density difference-based active 
contour for ultrasound image segmentation. Pattern Recognition. 2010, 43:2028-2042. 

15. Ballerini L. Genetic snakes for medical images segmentation. In: Proceedings of the First 
European Workshops on Evolutionary Image Analysis, Signal Processing and 
Telecommunications. vol. 1596/1999 of EvoIASP ’99/EuroEcTel ’99. Springer-Verlag. 1999. 
p. 59–73. 

16. Talebi M, Ayatollahi A, Kermani A. Medical ultrasound image segmentation using genetic 
active contour. Journal of Biomedical Science and Engineering. 2011, 4:105-109. 

17. Novo J, Santos J, Penedo MG. Topological Active Models Optimization with Differential 
Evolution. Expert Systems with Applications. 2012, 00:1–28. 

18. Cruz-Aceves I, Avina-Cervantes JG, Lopez-Hernandez JM, Garcia-Hernandez MG, Ibarra-
Manzano MA. Unsupervised cardiac image segmentation via multi-swarm active contours 



Nanomedicine  355 

with a shape prior. Computational and Mathematical Methods in Medicine. 2013, 
2013(909625):10. 

19. Cruz-Aceves I, Avina-Cervantes JG, Lopez-Hernandez JM, et al. Automatic image 
segmentation using active contours with univariate marginal distribution. Mathematical 
Problems in Engineering. 2013, 2013(419018):12. 

20. Shahamatnia E, Ebadzadeh MM. Application of Particle Swarm Optimization and Snake 
Model Hybrid on Medical Imaging. In: Proceedings of the third International Workshop on 
Computational Intelligence in Medical Imaging. IEEE service center. 2011. p. 1–8. 

21. Tseng CC, Hsieh JG, Jeng JH. Active contour model via multi-population particle swarm 
optimization. Expert Systems with Applications. 2009, 36:5348–5352. 

22. Abdi MJ, Hosseini SM, Rezghi M. A Novel Weighted Support Vector Machine Based on 
Particle Swarm Optimization for Gene Selection and Tumor Classification. Computational 
and Mathematical Methods in Medicine. 2012, 2012(320698):7. 

23. Petrovsky A, A S, Mccall J. Optimising cancer chemotherapy using an estimation of 
distribution algorithm and genetic algorithms. Genetic and Evolutionary Computation 
Conference, GECCO-2006. 2006, p. 413–418. 

24. Ho WH, Chan ALF. Hybrid Taguchi-Differential Evolution Algorithm for Parameter 
Estimation of Differential Equation Models with Application to HIV Dynamics. 
Mathematical Problems in Engineering. 2011, 2011(514756):14. 

25. Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In Proceedings of 
the sixth international symposium on micro machine and human science. 1995, p.39–43. 

26. Shi Y, Eberhart RC. A Modified Particle Swarm Optimizer. In Proceedings of the IEEE 
Congress on Evolutionary Computation. 1998, p. 69–73. 

27. Storn R, Price KV. Differential Evolution - A simple and efficient adaptive scheme for global 
optimization over continuous spaces. International Computer Sciences Institute, Berkeley, 
CA, USA, 1995. TR-95-012. 

28. Storn R, Price KV. Differential Evolution – A Simple and Efficient Heuristic for Global 
Optimization over Continuous Spaces. Journal of Global Optimization. 1997, 11:341-359. 

29. Larrañaga P, Lozano JA. Estimation of Distribution Algorithms: A New Tool for Evolutionary 
Computation. Kluwer, Boston, MA, 2002. 

30. Mühlenbein H, PaaB G. From recombination of genes to the estimation of distributions I. 
Binary parameters. Parallel Problem Solving from Nature. 1996, p. 178–187. 

31. Pelikan M, Goldberg DE, Lobo F. A survey of optimization by building and using 
probabilistic models. Computational Optimization and Applications. 2002, 21:5–20. 

32. Muehlenbein H. The equation for response to selection and its use of prediction. 
Evolutionary Computation. 1997, 5(3):303–346. 

33. Bashir S, Naeem M, Shah SI. A comparative study of heuristic algorithms: GA and UMDA in 
spatially multiplexed communication systems. Engineering Applications of Artificial 
Intelligence. 2010, 23:95–101. 

34. Lozada-Chang LV, Santana R. Univariate marginal distribution algorithm dynamics for a 
class of parametric functions with unitation constraints. Information Sciences. 2011, 
181:2340–2355. 

35. Neshat M, Sargolzaei M, Toosi AN, Masoumi A. Hepatitis Disease Diagnosis Using Hybrid 
Case Based Reasoning and Particle Swarm Optimization. ISRN Artificial Intelligence. 2012, 
2012(609718):6. 

36. Cruz-Aceves I, Avina-Cervantes JG, Lopez-Hernandez JM, Gonzalez-Reyna SE. Multiple 
Active Contours Driven by Particle Swarm Optimization for Cardiac Medical Image 



Nanomedicine  356 

Segmentation. Computational and Mathematical Methods in Medicine. 2013, 
2013(132953):13. 

37. Cruz-Aceves I, Avina-Cervantes JG, Lopez-Hernandez JM, Rostro-Gonzalez H, et al. Multiple 
Active Contours Guided by Differential Evolution for Medical Image Segmentation. 
Computational and Mathematical Methods in Medicine. 2013, 2013(190304):14. 

38. Labati RD, Piuri V, Scotti F. ALL-IDB: the Acute Lymphoblastic Leukemia Image Database for 
Image Processing. in Proceedings of the 2011 IEEE International Conference on Image 
Processing (ICIP 2011). 2011 Sep, 2011:2045–2048. 

39. Scotti F. Robust Segmentation and Measurements Techniques of White Cells in Blood 
Microscope Images. In Proceddings of the 2006 IEEE Instrumentation and Measurement 
Technology Conference (IMTC 2006). 2006 Apr, 2006:43–48. 

40. Ballard DH. Generalizing the Hough transform to detect arbitrary shapes. Pattern 
Recognition. 1981, 13(2):111–122. 

41. Cuevas E, Diaz M, Manzanares M, Zaldivar D, Perez-Cisneros M. An Improved Computer 
Vision Method for White Blood Cells Detection. Computational and Mathematical 
Methods in Medicine. 2013, 2013(137392):14. 

42. Cuevas E, Oliva D, Diaz M, Zaldivar D, Perez-Cisneros M, Pajares G. White Blood Cell 
Segmentation by Circle Detection Using Electromagnetism-Like Optimization. 
Computational and Mathematical Methods in Medicine. 2013,2013(395071):15. 


