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Introduction 
 
Diluted magnetic semiconductors (DMS) are materials extensively studied nowadays, owing to the fact 
that the magnetic order is intimately connected to the density of charge carriers in the semiconductor, 
hence offering new possibilities of magnetism control via the charge carriers. The basic mechanisms 
responsible for this indirect exchange are those developed five decades ago by Zener and by 
Ruderman-Kittel-Kasuya-Yosida. However, implementing these mechanisms in the practical analysis of 
magnetic properties, reflected in the evolution of magnetization with applied field and temperature 
M(H, T) is still not standardized. The first part of this Chapter analyzes briefly all basic mechanisms 
which may lead to ferromagnetism, from direct exchange to indirect exchange, treating also the cases 
of spin glasses and superparamagnetic systems, which sometimes coexist with ferromagnetic phases. 
The second part of the Chapter applies the developed concepts to the case of a diluted magnetic 
semiconducting system quite studied during the last decade, the case of manganese embedded into 
germanium. 
Ge(001) surfaces are relatively easy to be prepared, have a higher stability in ultrahigh vacuum as 
compared with Si(001), and are compatible with silicon-based technology. Therefore, magnetic systems 
synthesized on or inside Ge(001) may provide a valid alternative for integration of ferromagnetic 
functionalities onto semiconductor electronics.  
Room temperature ferromagnetic Mn-Ge systems are obtained by simple deposition of manganese on 
Ge(001) heated at relatively high temperature (starting with 250 °C). The samples are characterized by 
low energy electron diffraction (LEED), high resolution transmission electron microscopy (HRTEM), X-
ray photoelectron spectroscopy (XPS), magneto-optical Kerr effect (MOKE) and superconducting 
quantum interference device (SQUID) measurements. Samples deposited at relatively elevated 
temperature (350 °C) exhibited the formation of ~ 5-8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates 
by HRTEM, while XPS (Ge 3d, Ge 2p and Mn 2p) identified at least two Mn-containing phases: the 
agglomerates, together with a Ge-rich phase, or manganese diluted into the Ge(001) crystal. LEED 
revealed the persistence of long range order, including the (2 x 1) - (1 x 2) Ge(001) reconstructions after 
a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. The films exhibited a 
clear ferromagnetism at room temperature, while SQUID measurements as function on temperature 
revealed the co-existence of a ferromagnetic and of a superparamagnetic phase with RKKY interaction. 
 
 

Basic aspects 
 
The main characteristics of the ferromagnetism are the following: 
 

a) the presence of a hysteresis curve of the magnetization vs. the applied magnetic field M(H), 
which automatically implies the existence of a ‘remanent magnetization’ Mr even in zero 
applied field, once the sample was magnetized, i.e. it experienced a higher applied field along 
one direction; 

b) the fact that the permanent magnetization (and implicitely the remanent magnetization) 
decrease with temperature. At temperatures above the Curie temperature TC, no remanence 
may be obtained and the system behaves like a paramagnet, i.e. it exhibits a weak 
magnetization with the applied field; 

c) the second derivatives of the free energy with respect to temperature and to the applied field 
have discontinuities, therefore there is a phase transition at the Curie temperature between 
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the ferromagnetic and the paramagnetic state. The physical quantities exhibiting 
discontinuities are the specific heat and the magnetic susceptibility. 

 
In the following, we shall concentrate mostly on the hysteresis curves and on their evolution with 
temperature, pointing out the main mechanisms responsible for ferromagnetism: direct exchange of 
insulated spins, band ferromagnetism of delocalized electrons, and indirect exchange mechanisms, 
which are of paramount importance for diluted magnetic semiconductors. 
 
Exchange interaction. The Heisenberg model. Hysteresis 
 
The Heisenberg model is derived from the energy separation between the triplet and the singlet states 
for a two-electron system EH = - 2J S1∙S2, where J is the Heisenberg exchange interaction, and S1,2 are 
the the spins of the two interacting electrons. For two electrons belonging to two neighboring atoms A 
and B described by the spatial wavefunctions A,B(r) with the radial origin being each atom, the 
exchange interaction is written as [1]: 
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where A,B satisfy the one-electron Schrödinger equations for atoms A and B: 
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ZA and ZB are charges of ions A and B, e0

2 = e2 /(40) the reduced square of the elementary charge. 
The Coulomb interaction K in the Heitler-London model is similar to eq. (1), but with indices A and B 
interverted in the last product of wavefunctions at the right-hand side, which separates the charge 
densities A,B = |A,B|2 in the integral, and give to the expression an immediate intuitive explanation: it 
is composed by the mutual repulsion between ions A and B, the attraction of the electron located on B 
by the ion A and that of the electron located on A by the ion B, plus the mutual repulsion of the two 
charge densities associated to both electrons. It will be somehow clear that the Coulomb interaction 
will decrease with increasing mutual separation between atoms A and B. The energies of the triplet 
(spins alligned, ↑↑) and singlet (↑↓) states are given by ES,T = A + B + K ± J, therefore their 
separation is 2J, with the triplet state being energetically more favorable for positive values of the 
exchange integral. 
There is no intuitive view of the exchange interaction. It occurs owing to the indiscerability of both 
electrons. In the Heisenberg model, the interacting magnetic systems are composed by isolated ions 
with incomplete outer shells; on these shells, according to Hund’s rules, individual electron spins are 
placed such as to maximize the overall projection on a chosen z axis (the axis corresponding to the 
eventual application of an external magnetic field). For example, a d7 outer shell will exhibit an spin 
configuration such as ↑↓↑↓↑↑↑, with a net electronic magnetic moment along the z axis of 3 Bohr 
magnetons (B). The Heisenberg model assumes that a similar inter-atomic or inter-ionic exchange is 
valid for the total (atomic or ionic) spin moments, Hint., 12 = - 2 J12 S1, tot∙ S2, tot. 
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Mean field theory takes the average over all interacting spins (around, let’s say, Si, centred on ion i), by 

replacing Sj (j ≠ i) with its average value jS
. This corresponds to the introduction of an internal 

(‘molecular’) field (in MKSA units): 
 

 
;

2 2
B0B0B0

MMS
S

H 












rrr

ij
jij

m n
JJ

J

 
2

B0
H 2 


rn

J


  (3) 
 
where the gyromagnetic factor was considered 2, for simplicity; 0 is the permeability of vacuum, r is 
the relativity permeability of the material, and the succesive approximation point on the prevalence of 
a constant near-neighbor exchange interaction, with  near neighbors around each spin Si. n is the 
density of magnetic atoms or ions. Equation (3) introduces also the Weiss ‘molecular field constant’, H, 
with the subscript “H” accounting for “Heisenberg”. 
The paramagnetism of bound electrons is obtained in the classical theory by averaging the projection 
of elemental magnetic moments z ranging from - max. to max., with inclusion of the statistical term 
exp(z0H/kBT). The computation is straightforward, and the Langevin function L(x) = coth(x) - 1/x (with 
x = max.0H/kBT) is obtained. In the quantum theory, the integral is replaced by a sum over all (2S + 1) 
values of the spin projection over the axis of the applied magnetic field, and the Brillouin function is 
obtained (we will drop the vector notation for field and magnetization, assuming that these vectors are 
colinear): 
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The need to introduce the relative permeability of the material r will be justified later. The Langevin 
function is obtained as a limit of the Brillouin function when S → ∞. The Weiss theory of 
ferromagnetism implies solving of an equation derived from (4): 
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For high temperatures or low values of J or of , the above equation has only one solution, M = 0 for H 
= 0, M ≠ 0 for H ≠ 0. The system is in the paramagnetic state. For parameters yielding a stepped shape 
of the function BS, equation (6) starts to have three solutions. Even for H = 0, there are two symmetric 
nonvanishing solutions M = ± Mr ≠ 0. Also, a solution with M > 0 exist sometimes for H < 0, and 
viceversa. Increasing further the absolute value of H < 0 implies that at a given point only the solution 
with M < 0 exist. This is the origin of the hysteresis cycle in ferromagnets. Plotting all three M solutions 
of the above equation vs. H yields an ‘S-shaped’ curve, with the inner part corresponding to solutions 
with negative susceptibility  = ∂M/∂H. These solutions must be discarded from thermodynamic 
considerations (they correspond to unstable states), and therefore a sudden jump is executed by the 
system when the field exceeds Hc. Figure 4.1 presents an illustration of all the considerations above, by 
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solving  = BS(h + ), and working in reduced variables, such as  = S2J /(kBT), h = 20rBSH/(kBT),  = 
M /(2nBS). 
 

  
 
FIGURE 4.1  
Examples of solutions for equation (6), translated here as  = BS(h + ). (a) represents the Brillouin function for S 
= 1/2, for zero (red curve) and nonzero (blue curve) applied field. Circles denote the three solutions. (b) represents 
the solutions found for two values of the interaction parameter (molecular field) . A clear increase in the 
coercitive field is induced by larger  values 
 
By setting m = M/Mmax and h = H/ Mmax, and by using the Langevin function L(x), the transcendent 
equation (6) may be written as m = L(am + bh), which can be written as bh = L-1(m) - am, with Mmax = 
nmax, b = 0rnmax

2/kBT = 0rMmaxmax /kBT and a = b = J/2kBT. As a general rule, in the following we 
will interpret the parameter a as the ratio between a characteristic microscopic energy 0 and the 
Boltzmann term a = 0/kBT, and the parameter b as the self-interaction of a magnetic moment max with 
the magnetic induction produced by these moments in the material. It is worth to be noted that 0nB

2 
≈  6.755 x 10-5 eV for usual atomic densities in solids n = 1029 m-3. In this case, the b parameter would be 
quite small at ‘usual’ temperatures kBT = 0.01-0.1 eV, yielding the necessity of using elevated fields to 
produce noticeable modification of the magnetization curve, H ≈ 102 - 104 Mmax. Thus, it is reasonable 
to introduce the relative permeability of the magnetic material in the above expressions, r = 103 - 105, 
yielding b values closer to unity.  
By using (∂L/∂x)0 = 1/3, it is clear that ferromagnetism occurs only if a > 3, therefore a = 3Tc/T. This 
immediately gives an order of magnitude for the energy 0, it is of about 0.01-0.1 eV for most systems 
of interest. If the parameter b is on the order of unity, the molecular field constant  yields as several 
units for ferromagnetic systems. 
An approximation of the inverse of the Langevin function may be derived by taking into account that 
for small values of x, L-1(x) ≈ 3x, and for x close to ±1, L-1(x) ≈ 1/(± 1 - x). In 1991, Cohen proposed the 
folowing approximate formula [2]: 
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Once again, the hysteresis curve can be described simply by h(m) = {L-1(m) - am}/b. By setting h = 0, one 
obtains the remanent magnetization mr; by setting ∂h/∂m = 0, one obtains the coercitivity point mc, 
then the coercitive field hc = h(mc). As an exercise left to the reader, these values are derived as: 
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Let us stress that the important parameter for these reduced values is a = b. Another simple exercise 
is to replace in the above formulas a = 3Tc/T and to derive that, in the neighborhood of the Curie 
temperature, the coercitive field behaves as (1 - T/Tc)

3/2 and the remanent magnetization as (1 - 
T/Tc)

1/2. 
By using the inverse Langevin function, the transcedent equation m = L(am + bh) may be transformed 
into an algebraic equation of third degree, whose solution for one branch of the magnetization curve 
M(H) may be written as: 
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where the cos and cos-1 function are to be considered when the argument is real and lower than 1 in 
absolute value, otherwise the corresponding hyperbolic functions cosh and cosh-1 are employed. When 
the argument is imaginary, cosh is replaced by sinh and cosh-1 by sinh-1, and the square root at the 
denominator is taken from the absolute value. When the argument is real and lower than -1, cosh-1 is 
taken from its absolute value and the overall sign is changed; this corresponds to the other branch of 
the hysteresis loop. When dealing with cos-1 functions, in some cases different roots are to be 
considered, and phases ± 2/3 have to be added into the curly brackets. 
An alternative explanation of the occurence of magnetic hysteresis curves is the Stoner-Wohlfarth 
model of single domain ferromagnets [3], where the domains are supposed to exhibit, in absence of 
applied fields, a saturation magnetization Ms oriented along their easy magnetic axis. Applying a field 
along some angle () with respect to the easy axis induces progressively the rotation of the 
magnetization in the direction of the applied field. If  is the angle between the magnetization and the 
applied field, the magnetic energy per unit volume is written as: 
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where Ku is the uniaxial anisotropy constant, and the second term is just the Zeeman energy. The 
equilibrium angle is found by minimizing equation (10):  
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The magnetization along the direction of the applied field is M = Mscos. This equation, together with 
(11), define the M(H) curve, with two branches, which can be written as: 
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with m = M/Ms. The energy profiles allow one to derive the way the system evolves, with jumps from a 
branch to another, as represented in Figure 4.2. More rectangular hysteresis loops will be obtained 
when the angle between the applied field and the easy axis approaches zero. The coercitive field may 
be computed from equation (11) by setting ∂H/∂m = 0, and the remanent magnetization is computed 
by setting H = 0. 
For random orientations of the applied field with respect to the easy axis, an immediate average of 
equation (12) for 0 ≤  ≤ 90° yields: 
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From here, the computation of the coercitive field and of the remanent magnetization is 
straightforward, Mr = Ms/21/2 and Hc = 2Ku/(0Ms). 
One may see that the Weiss and the Stoner-Wohlfarth models are completely different approaches to 
explain the hysteresis curves. The Weiss molecular field approach works with the magnitude of the 
magnetization along the applied field, whereas the Stoner-Wohlfarth model supposes that a maximum 
magnetization is realized along the easy axis of the micromagnet and the magnetization just rotates in 
the applied field. Moreover, in the limiting case of applied field along the easy axis, the Weiss theory 
supposes a microscopic energy for each moment whose projection along the z axis is 2SBm as W = - 
2S0HBm - 4S2 0B

2n<m>m, whereas the Stoner-Wohlfarth energy may be written as SW = - 
2S0HBm - um2, where u = Ku/n is the microscopic anisotropy energy. The main difference between 
these theories is that the Weiss model refers to a statistical ensemble of interacting spins, each one 
interacting with the external field and with the molecular field (already computed as an average of all 
spin projections) altogether, whereas the Stoner-Wohlfarth model analyses the behaviour of only one 
single domain system, but with uniaxial anisotropy. The statistical average for H = 0 in the latter case 
<m> = ∫mxexp(SW/ kBT) dm /∫exp(SW/ kBT) dm vanishes when the average is performed for all m values 
ranging from -1 to +1, and for H ≠ 0 just a paramagnetic behavior is obtained. However, for low 
temperatures kBT << u and if the system was set in a well-defined state, e.g. m = +1, it is hard to 
believe that it will move spontaneously in a state with m < 0, therefore only values with m = 1 - m, 
with m << 1 should be considered in the average. This system is called in ‘frozen’ state. By waiting an 
infinite time, fluctuations would eventually lead to the realization of the state with opposite magnetic 
momentum m = -1. These concepts will be useful when we shall discuss superparamagnetism, in the 
next paragraph. 
 

   
 
FIGURE 4.2  
Examples of derivation of M(H) curves from the Stoner-Wohlfarth theory, for three angles between the applied 
magnetic field and the easy magnetization axis 
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By setting in the expressions of the Weiss or of the Stoner-Wohlfarth energies m = <m> + m, it is easy 
to see that the two expressions become equivalent if m  <m>. Moreover, if SW(m) has two minima 
and the system has been prepared in one of them, if the barrier between minima exceeds the thermal 
energy, it is hard to believe that the system could overcome this barrier. Therefore, the system may be 
treated as exhibiting a single minimum, and the Weiss theory is applicable around this minimum. From 
the comparison between the Weiss and the approximation obtained for the Stoner-Wohlfarth energy, 
one may infer the molecular field constant in this case: 
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An unified theory was sketched by Callen, Liu, and Culien [4]. Working in straightforward reduced 
variables (from equation (10)) and introducing an additional molecular field constant 0, the magnetic 
energy is expressed as: 
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All consideration sketched previously are valid, but applied to the ‘effective’ field h’ = h + m. In 
particular, when  = 90°, and, according to equation (12), the hysteresis area is expected to vanish, it 
may be seen that for  > 2 the hysteresis is again realized. Figure 4.3 represents the influence of 
including the molecular field constant in the case of a polycrystalline sample, where the angle 
averaging yielding to equation (13) is operated. It is clear that the presence of the molecular field 
constant fosters the ferromagnetism and enhances the area of the hysteresis curve. It may be 
demonstrated that in this case CLC = 0 + u. 
The temperature dependencies in the Callen-Liu-Cullien model is obtained by averaging <cos>, by 
integrating over all possible angles (from 0 to 360°) between the direction of the magnetization with 
respect to the applied field, and using the statistical factor exp(-E/nkBT). At the end, a transcendent 
equation is obtained for <cos>, as in the Weiss theory. 
In the following, for simplification, each time we shall encounter in the energies a negative quadratic 
term in a parameter proportional to the magnetization, we shall treat it as a sign of ferromagnetism 
occurence. This should be interpreted either in the framework of the Weiss model, with the statistical 
average implicitely understood in the computation of the average (Const. x <m>m) or in the framework 
of the Stoner-Wohlfarth model, by using a term such as Const. x m2, and by taking into account that, 
during the observation time, the system doesn’t have the time to shift from m > 0 to m < 0 or viceversa. 
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FIGURE 4.3  
m(h) curves obtained in the Stoner-Wohlfarth model, starting with the angle-averaged formula (12), and the 
effect of including a molecular field constant, as assumed by the Callen-Liu-Cullien model 

 
 
 
 
 
 
 
 
 
 

 
Basic theories of ferromagnetism for metals 
 
Despite the knowledge of ferromagnetism from the dawn of humanity, its origins in quite simple 
systems, such as ferromagnetic metals, is still subject to debates nowadays. It is hard to imagine our 
everyday life without magnetism, since they are used in all electrical motors, most of switches, 
recording media, etc. These magnets for practical use are most of them metallic. However, even for the 
explanation of ferromagnetism in simple transition metals (Fe, Co and Ni), three models have been 
developed so far: direct exchange, band ferromagnetism and the indirect exchange (Zener model). For 
more complicated systems, implying the dilution of magnetic ions in nonmagnetic matrices or the 
realization of magnetic clusters, other phenomena manifest, e.g. spin glasses or superparamagnetism. 
These phenomena will be treated at a very basic level in this paragraph, with the aim of outlining the 
main parameters which might be responsible for ferromagnetism. 
 
a) Direct exchange 
 
Early theories started by attributing ferromagnetism to direct exchange interaction between 
neighboring spins, much as in the case of the ferromagnetism of localized electrons. The first goal of 
any theory is to explain why ferromagnetism occurs in some metals only (at least, at room 
temperature). Everything starts with an eventual dependence of the exchange integral with the 
interatomic distance. A well-known plot for 3d transition metals (“the Bethe-Slater curve”) represents 
the exchange integral J as being small and positive for large values of the interatomic distance, 
increasing when the distance is reduced, reaching a maximum, then dropping to negative values when 
the interatomic distance (divided by the “typical dimension” of the 3d state) is lower than a critical 
value [5]. Fe, Co and Ni cases are placed on the positive branch of J, Mn and other transition metals 
with lower Z are placed on the negative branch. Despite criticism connected to the evaluation of 
Heitler-London integrals [6], the Bethe-Slater curve is still taught in most courses on magnetism and its 
behavior is often left as sole explanation for magnetism occuring only in the upper right corner of 
transition metals. 
It is clear that the exchange integral will depend on the interatomic distance, the question is whether it 
may change its sign or not. A simple evaluation may be done starting with equation (1). The first term 
yields the factor e0

2ZAZB / RAB multiplying |SAB|2, where the ‘superposition integral’ is given by SAB = 
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∫d3rA*(r)B(r). Now, for all r-1-like denominators in the last three terms of equation (1), the leading 
contribution will be given by a volume 3 around (r2 ≈ RA) for the first term, around (r1 ≈ RB) for the 
second term, and around (r2 ≈ r1) for the third term. Applying a 3-D mean value theorem for ZA = ZB = Z, 
this yields: 
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The second term vanishes for d states, since A(r) ~ |r - RA|2 (the hydrogen atom radial wavefunction 
corresponding to angular momentum l behaves as rl). Therefore, equation (16) is expressed as a sum of 
two positively definite terms. A change of sign is expected only when the superposition of the d states 
is so large that for each of the second and the third terms of equation (1), important contributions to 
the integral will be given also by regions apart from the singularities (r2 ≈ RA) or (r1 ≈ RB). 
Note also that modern computations confirmed partially the Bethe-Slater curve [7], however, for one-
dimensional chains of transition metal atoms (from vanadium to cobalt). 
 
b) Band (Stoner) ferromagnetism 
 
The band theory of magnetism proposes a completely different approach. Here the electrons are 
delocalized over the whole crystal. It is assumed that the intrasite Coulomb repulsion favors the 
apparition of an asymmetry between the two subbands with opposite spins. The simplest model to 
account for the intrasite Coulomb repulsion is the Hubbard model, where, in second quantization, the 
Hamiltonian is written as [8,9]: 
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where  stands for projection of spins on the z axis (↑ or ↓), <ij> means that the sum over j is 
performed on nearest neighbors of i only, such that the first term (the ‘kinetic’ one) represents the 
hopping of electrons with spin , and the second is the intrasite repulsion of electrons with opposite 
spin. There is an implicite assumption of this model, namely that it refers to a system of atoms where a 
maximum of two states with opposite spins may be accomodated on each site. However, it is often 
extrapolated to the practical case of magnetic metals, particularly to 3d transition metals [9-11]. An 
important observation we will point out is that, at equilibrium and for thermal energies kBT much lower 
than the Hubbard parameter U (which is of several eV), the intrasite Coulomb repulsion will prevent 
the placement of more than one electron on one site if the total number of electrons is less than half of 
the number of available sites. Therefore, the interacting term in this case will vanish, since the 
occupancy of each site i will be either ↑ or ↓, randomly. Extrapolating to transition metals, this means 
that no Hubbard interaction is expected for metals whose available number of d electrons is lower than 
(or equal to) 5. Indeed, these metals (Sc, Ti, V, Cr, Y, Zr, Nb, Mo) hardly show ferromagnetism. A weak 
chromium ferromagnetism was detected at very low temperature in Refs. [12,13], and ferromagnetism 
of vanadium was measured in vanadium nanoparticles in Ref. [14]. It is to be expected that contraints, 
anisotropy and low dimensionality plays a vital role in stabilizing this ferromagnetism [9,10]. 
With this observation, for metals showing more than half of band occupancy, in average, the intrasite 
Coulomb repulsion from equation (16), when averaged on the vacuum state [9], yields the product of 
spin up and spin down electron densities. By introducing the asymmetry , such that n↑,↓ = n(1 ± )/2, 



Nanomagnetism  84 

the Coulomb interaction yields (per unit volume) nU(1 - 2)/4. By discarding the unity term, which does 
not depend on the spin polarization, one obtains a quadratic decrease of the total energy (for given n 
larger than half of the available sites) as function on the asymmetry parameter. Therefore, the Hubbard 
interaction tends to induce a different occupancy of the ↑ and ↓ subbands. In the following, the 
subband with spin oriented ↑ will be denoted as the ‘majority’ spin, and the band with spin ↓ will 
represent the ‘minority spin’ subband. The next approximation is to suppose that the bands are splitted 
by the energy , i.e. the majority subband is shifted towards lower energies by  /2, and the minority 
subband is shifted towards higher energies by the same amount. In fact, this is not true for densities of 
states g() varying strongly near the Fermi energy: for a more detailed analysis, the reader is invited to 
consult Refs. [9-11]. 
This asymmetry is accompanied by an increase of the average kinetic energy. For low asymmetry 
parameters  and not so stepped density of states, the kinetic energy increase of each electron is 
approximately /2, and there will be n/2 electrons per unit volume participating to this kinetic energy 
increase. The asymmetry may be expressed as the integral of the density of states near the Fermi 
energy, over a range equal to the band splitting, and it may be approximated as  ≈ g(F) , with the 
density of states defined per electron. Therefore, the kinetic energy increase yiels (n/2) x (/2) ≈ 
n2/[4g(F)]. Replacing this together with the energy decrease due to the Coulomb intrasite repulsion 
yields the energy difference per unit volume: 
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    (18) 
 
From here, the Stoner criterion for ferromagnetism is straightforward, Ug(F)  > 1 [15]. Narrow bands, 
large intrasite repulsions and near half filling are needed for collective ferromagnetism. 
Enough arguments may be formulated concerning both the Hubbard energy and the kinetic energy 
increase, for substituting 2 with <> in (18) to yield a Weiss-like theory. 
The molecular field constant can be easily derived in this case by assuming that the energy per unit 
volume may be written as magnetic interaction energy between the magnetization M = nB and the 
induction of the molecular field constant, such as Eferro. = - 0rM2. The ‘Stoner’ molecular field 
constant follows: 
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which compares well with equation (3), for localized moments. It is clear that  will increase if the 
intrasite Coulomb repulsion or the density of states at the Fermi level increases, it will also increase by 
decreasing the density of electrons. Nevertheless, one has to pay attention to this aspects, since the 
density of conduction electrons cannot be decreased to a value lower than half of the available sites, 
otherwise, as discussed previously, the Hubbard model cannot be applied. Therefore, the strongest 
magnetism occurs in metals with nearly half filled shells, but exceeding the half filling. This is the case 
of Fe of 3d elements, and of Ru of 4d elements. Indeed, more sophisticated calculations predicted the 
occurence of band ferromagnetism in ruthenium [16]. 
Up to now, ferromagnetism appears to be a delicated balance between the Coulomb repulsion and 
attraction of each electron by the neighbouring atom, yielding the sign of J in the model of localized 
moments, or to a balance between the Coulomb intrasite repulsion energy and the inverse of the one-
electron density of states, in the band model. The molecular field constant exceeds unity for typical 
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energies (the product J, or half of the paranthesis in equation (18)) of 0.1-1 eV, and for relative 
permeability r ~ 1000. Also, increasing n, the density of interacting spins (in the localized model) or of 
conduction electrons yields to the decrease of the molecular field constant. 
 
c) Zener model. Indirect exchange 
 
The Zener model of exchange between localized moments and delocalized electrons [17] is another 
approach, which mixes ferromagnetism of localized electrons with that of delocalized ones. Zener 
pointed out that the Bethe-Slater curve might not be an accurate description of the direct exchange 
between atoms with d electrons and proposed that, no matter which is the interatomic separation 
distance, the direct exchange interaction is antiferromagnetic. He retained from the Bethe-Slater 
model the fact that the d electrons are localized on atomic centres and that they form a many-electron 
state which maximizes the projection of the total spin momentum (Hund’s rule). In order to support 
the assertion that near-neighbor exchange must be antiferromagnetic, Slater analyzed the crystal 
structures of these materials and found out that, even for nonmagnetic metals, such as Ti, V, Cr, Zr, Nb, 
Mo, with d occupancies ranging from d3 to d5 (one supposes that one electron from the conduction 
band is left in the s state), the most stable structure is the body centred cubic (bcc) one, which can 
accomodate antiferromagnetic coupling with no frustration. Although more closely packed, the face 
centred cubic (fcc) and hexagonal close packed (hcp) structures are not realized (or are realized only in 
some particular cases) for those metals which are expected to exhibit a large value of the overall spin 
moment. (Practically, Zener introduced the concept of ‘frustrating antiferromagnetism’ when 
discussing the fcc and hcp structures).  
In line with the above estimates, see equation (16), Zener’s assumption can be discussed on very basic 
grounds, starting again with equation (1) and supposing that the atoms A and B are well separated, 
with effective charges ZA = ZB = Z ≠ 1. Then, the absolute values of the coordinate differences rA2 ≈ rB1 ≈ 
r12 ≈ rAB and the term (Z - 1)2/ rAB > 0 is separated before the integral, which in turn can be further 
expressed as |SAB|2. Therefore, for large separations, the exchange integral is positive, as for the Bethe-
Slater curve and contradicting Zener’s hypothesis. 
However, by taking the antiferromagnetic coupling between nearest neighbors for granted, Zener 
turned to the analysis of the coupling of localized d electrons with the delocalized s electron. 
Spectroscopic data allowed to affirm that always the coupling of an s shell with an incomplete d shell is 
with parallel spins, even in insulated atoms and ions. Since in the solid state a stronger interaction is 
expected to occur between these shells, owing to the band overlapping, it is to be expected that the 
interaction will be fostered in metals with respect to the insulated atoms. Only in the case in which this 
s-d exchange interaction exceeds the antiferromagnetic direct exchange between neighboring atoms is 
ferromagnetism expected to occur. 
Denoting by Sd the spin of the d shell consisting in localized electrons and by Sc the spin of the s shell 
(‘conduction’ electron), Zener proposed a simple formula for the interaction that may lead to 
ferromagnetism: 
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where  characterizes the antiferromagnetic coupling ( = - 4ndJdd, where Jdd is the Heisenberg 
interaction with all  neighbors carying Sd, with Jdd  < 0), characterizes the ferromagnetic s-d coupling 
(Sc = ndJcd > 0, where Sc = /2), and  the increase of the kinetic energy induced by the ferromagnetic 
ordering in the conduction electrons. According to the Stoner ferromagnetism, this term is 
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nc
2/[4gc(F)], therefore   = 2nc/gc(F). For one atom,  is a few eV and should decrease when the 

overlap between neighboring d shells decrease, e.g. for the transition elements situated at the right-
hand side of the periodic table (more electronegative, i.e. when the d shells are more confined towards 
the nuclei).  is on the order of magnitude of about 1 eV, and may be estimated from spectroscopic 
data.   is on the order of magnitude of the Fermi energy divided by the number of conduction 
electrons per atom, therefore it may also be several eV. By minimizing equation (20) with respect to Sc, 
one obtains Sc, opt. ≈ (/)Sd, therefore the average value for the spin projection of the conduction 
electrons is rather lower than unity. It follows also an expression for the interaction: 
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A criterion for ferromagnetism, as in the case of the band ferromagnetism, occurs: 2 > . 
If ferromagnetism is stable, the parameter 2/  -  may then be interpreted as an ‘exchange integral’ 
and introduced in the Weiss theory of ferromagnetism. It follows also that this ‘exchange integral’ can 
take higher values than in the case of direct exchange, a few tenths of eV. Therefore, ferromagnetism 
in metals might be more robust than in Heisenberg (insulating) systems, and this indeed happens, if 
one compares the Curie temperature of Fe or Co to that of ferromagnetic oxides. 
With his model, Zener introduced the term of ‘indirect exchange’, where the magnetic interaction is 
transmitted from one spin to another not by direct exchange interaction, but intermediated by a third 
entity (a conduction electron) able to carry the information about the orientation of one spin to the 
next one. Variants of the indirect exchange are the ‘superexchange’ where the interaction between 
two magnetic ions is intermediated by the orbitals of a nonmagnetic ion (typical cases Fe - O - Fe or Mn 
- O - Mn), leading to ferromagnetic or antiferromagnetic order [18]. Indirect exchange intermediated 
by the conduction electrons wil be treated more extensively in the next Subsection. 
By introducing the values for ,  and  expressed in terms of exchange integrals, density of interacting 
Sd (i.e. nd), and density of ‘conduction’ electrons nc with their asymmetry given by , the optimum 
asymmetry is obtained as: 
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Note that nd is the density of total atomic spins Sd, coupled according Hund’s rules, and not the density 
of d electrons. For a pure metal, nd is simply the atomic density, therefore (nd / nc) may be regarded as 
the inverse of the s orbital occupancy 1/, where the electronic configuration of the metal with  outer 
shell electrons may be written as 4s3d  -  or 5s4d  - . 
When equation (22) is satisfied, the criterion for Zener ferromagnetism may be written as: 
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Note that the density of states refers to s (or ‘conduction’) electrons only. For ferromagnetism to occur, 
it is clear that larger ferromagnetic interactions with conduction electrons and larger density of states 
of these conduction electrons at the Fermi energy are needed; but the surprising result is that the ratio 
between the density of conduction electrons and that of the localized Sd spins must be low.  
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By assuming that Eferro. = - 0rM
2, with M = (ncopt. + 2 ndSd)B, the ‘Zener’ molecular field constant 

can be expressed as: 
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where the last approximate relation was written for the case of well separated Sd spins. For practical 
evaluations, it is always good to know that the density of states for s electrons is a smooth curve, 
therefore, for nearly half-filled s bands gc(F) ≈ 1/Wc. where Wc is the bandwidth of the conduction 
electrons (several eV). Numeric estimates give a value of the molecular field constant exceding one 
hundred for Jcd on the order of 1 eV and the bandwith on the order of several eV. Note, however, that  
has a quadratic dependence on Jcd. 
 
d) A Stoner-Zener model 
 
An immediate development can be made, by integrating the Stoner and the Zener model into a single 
picture. We consider both the indirect exchange between localized d electrons and conduction s 
electrons, together with the intrasite repulsion between s electrons. Assuming that the Coulomb 
repulsion between s and d electrons doesn’t have any spin dependence, everything may be written by 
introducing the Hubbard energy U in the 2 dependent term, by replacing 1/ gc(F) with 1/gc(F) - U. 
Consequently, the criterion for ferromagnetism (23) is written as: 
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and one sees that it is immediately satisfied when only the Stoner criterion is satisfied Ug(F)  > 1. The 
molecular field constant becomes, in the case where the Stoner criterion is not fulfilled: 
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and it has a divergence when (U - Jcd)g(F) increases towards unity, which means that the Stoner 
criterion would be already satisfied. In fact, this divergence does not manifest, since the ‘optimum’ spin 
asymmetry may be written as: 
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In the following, we consider that the Stoner criterion is not satisfied gc(F)U < 1. The fact that the 
optimum spin asymmetry cannot exceed 1 is translated into the following condition: 
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If this condition is not fulfilled, then   = 1 and the maximum asymmetry of conduction electrons is 
realized. Taking into account both cases from above, one can explicitely write the energy per unit 
volume as: 
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The modulus of Sd in the second equation (29) comes from the symmetry of the problem when the spin 
is reversed (in that case, opt., according to equation (27), would be lower than -1). It may be seen that, 
when the Stoner criterion is approached, the energy is minimized when |Sd| shifts from its maximum 
allowed value from Hund’s rules (which would be the case for a simple parabola, when equation (28) 
holds) to one quarter of the ratio between the indirect exchange interaction and the direct one S0 = Jcd 
/ (4|Jdd|), irrespective on the density of spins or of conduction electrons. In general, the second 
equation (29), when the criterion for ferromagnetism (28) is satisfied, yields a curve with two minima 
at ± S0. 
Zener and Stoner ferromagnetisms are obtained from the above formula as limiting cases when U = 0 
or when Jcd = 0. These derivations are left to the reader as an exercise. 
 
e) Superparamagnetism 
 
For insulated nanoparticles, each one exhibiting ferromagnetic order, individually, a phenomenon 
called superparamagnetism occurs [19]. This behavior is characterized by an abrupt variation of the 
M(H) curve, with no hysteresis. It can be well described by a Langevin function: equations (4-5), for 
large values of the spin S, are written as: 
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Saturation is reached for low values of the applied field H (0H of a few mT), if S exceeds one million. 
The large value of S is in this case just the total spin of each nanoparticle. In case of distributions of 
nanoparticles described by known functions, modified formulas may be proposed, see e.g. Ref. [20]. 
We reconsider the case of the Stoner-Wohlfarth model, for an ensemble of nanoparticles with 
randomly distributed easy axes, at high temperatures, such that both negative and positive states of 
magnetization are realized. Averaging equation (12), for the case of no field applied to the system and 
for 0 ≤  ≤ 180° yields zero permanent magnetization. Cooling down the system ‘freezes’ this situation 
with no net magnetization. Then, applying a small magnetic field, such that the Zeeman energy is 
considerably lower than the anisotropy energy, will not change the situation, at least if the time spent 
to observe the system is low enough. Despite the fact that in the actual case states with the moments 
of the nanoparticles oriented more or less along the applied field (0 <  < 90°) are lower in energy than 
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the corresponding states with the moments oriented along the angle 180° - , the thermal fluctuations 
are not enough to overcome the barrier for the latter cases, and to yield the most favourable energetic 
state. The time needed to overcome this barrier (the ‘Néel relaxation time’) may be expressed as: 
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where N is the number of spins in the nanoparticle and V its volume. 0 is the ‘attempt time’, i.e. the 
time spent by each nanoparticle between two attempts of switching its orientation in the direction of 
the most favorable energetic state. Eventually, 0 may be connected to the thermal energy kBT via the 
uncertainity principle, when speaking about the typical frequency of the driving forces (thermal 
fluctuations) 0 ~ h / (kBT), or to the gyromagnetic precession in an applied field B,0 ~ h/(BB), when 
considering the typical response times [21]. Typical orders of magnitude between 10-9 to 10-13 seconds 
are obtained for most practical cases. 
When the anisotropy energy is large with respect to the thermal energy, the Néel relaxation time may 
even exceed the estimated age of the Universe. Therefore, once the nanoparticle system is ‘frozen’ e.g. 
in a state with zero average magnetization, it will remain in this state indefinitely. Applying a small 
magnetic field and warming up the system implies that, at a given temperature, the system has enough 
time to ‘relax’ on the measurement time scale and to occupy states energetically more favorable, i.e. 
with 0 <  < 90°. A non-vanishing magnetization will manifest, therefore in the M(T) curve one observes 
an increase, ∂M/∂T > 0. For larger temperatures, thermal fluctuations become so important that the 
average magnetization decreases with temperature, as for a normal paramagnet. Thus, one observes a 
peak in the ‘zero field cooled’ (ZFC) curve. From the position of this peak, one may estimate the 
magnetic anisotropy energy, of course, by doing also some suppositions about the ‘attempt time’ and 
setting the relaxation time to the (presumably known) measurement time. This derivation is, however, 
hindered also by the fact that that in most cases one encounters a distribution of nanoparticles, 
therefore merely only qualitative derivations are made starting with the peak in the zero field cooled 
M(T) curves. 
When the system of nanoparticles is cooled down in an applied field, above the coercitive field defined 
e.g. starting with equation (11), the system is ‘frozen’ in a magnetic state and will exhibit a non-
vanishing magnetization at low temperature. M(T) increases and stablizes with decreasing of the 
temperature, since thermal fluctuations lower in magnitude. No peak should be observed. Anyway, in 
the following we shall demonstrate that in the case of diluted magnetic semiconductors some non-
monotonous behavior of the ‘field cooled’ curve may be observed, and this may be connected to the 
spin glass or to the indirect exchange character of the magnetic interactions. 
 
f) Spin glasses 
 
Experimentally, the first systems exhibiting ‘spin glass’ behavior were alloys of magnetic elements (Fe, 
Mn) with noble metals (Cu, Au) [22]. Spin glasses are defined as systems exhibiting a cusp in the 
magnetic susceptibility, at a ‘glass transition temperature’ Tg. Efforts were undertaken to describe this 
cusp as a phase transition; however, no other second order derivative of the energy (in particular, the 
specific heat) was found to present a similar behavior [23]. The Ruderman-Kittel-Kasuya-Yosida (RKKY) 
theory (sketched in more detail in the next Section) treats the mutual coupling between two insulated 
spins via the conduction electrons, at a more sophisticated level than the Zener theory. It will be shown 
that the exchange integrals derived in the RKKY theory oscillate with the separation distance between 
the two spins, therefore ferromagnetic and antiferromagnetic couplings are equally expected to occur 
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in such systems. Hence, it is believed that spin glasses may be modeled as ensembles of spins with 
either ferromagnetic or antiferromagnetic couplings between them; it is easy to see that most of these 
systems will be ‘frustrated’, i.e. one may find a closed path starting with one spin, going from one spin 
to another and ordering all time the current spin according to the coupling with the previous one, 
ending with the necessity of reversing the spin of the initial spin (the reader can just investigate 
mentally the possibility of antiferromagnetic coupling in a fcc or hcp lattice). Thus, in contrast with the 
ferromagnetic case, these systems will possess intrinsic disorder, manifested in random signs of the 
exchange integrals Jij. The Edwards-Anderson theory [23] treats oscillating interactions between spins 
dissolved in the matrix, with the result of no mean ferro- or antiferromagnetism, but with identification 
of a ground state with the spins alligned in definite directions, even if these directions appear to be at 
random. “At the critical temperature the existence of these preferred directions affects the orientation 
of the spins, leading to a cusp in the susceptibility.” [23]. The Sherrington-Kirkpatrick (SK) theory [24] 
starts with a gaussian distribution of exchange integrals between spins, uses the ‘replica trick’ and ends 
up with the derivation of a phase diagram of the three possible states: paramagnetism, spin glass, and 
ferromagnetism, as function on the mean exchange integral, width of the distribution of the exchange 
integral, and thermal energy. The spin glass state is characterized by no net magnetization m = <S> = 0, 
but nonvanishing average value of the correlation functions <Si(t1)Sj(t2)>. The magnetic susceptibility 
and the specific heat present cusps at Tg, while the zero temperature entropy becomes negative in SK 
theory. In Ref. [24], it is commented that these unphysical results may occur from some problems 
when the thermodynamical limit N → ∞ is interverted with the ‘replica limit’, that is, the number of 
replicas should vanish. 
A more terrestrial point of view was presented by Trachenko in Ref. [25], where the possibility of a 
phase transition is simply discarded and the considerations we employed at the description of 
relaxation effects in zero field cooled superparamagnetic nanoparticles are considered also in this case. 
At high temperature, the system is paramagnetic and the susceptibility obeys the Curie law  = C/T. At 
low temperature, spins are frozen and subject to periodic attempts to be re-arranged in the direction 
of the applied field. The microscopic mechanism coupling thermal agitation with spins are the spin 
waves, which can be shown to yield a parabolic dependence of the susceptibility on the temperature  
= 0 + AT2. This qualitatively describes the cusp in the susceptibility curve, with Tg defined as the 
temperature from which spins are able to rotate and to fully relax in the direction of the applied field. 
At low temperatures, spins just oscillate, attempting to allign in the direction of the aplied field, and 
only a minor part of them succeed. This is the origin of the lower susceptibility in the ‘frozen’ state. 
  
RKKY interaction 
 
The semiconductors are special cases, situated from their conduction properties between the metals 
and the insulators. If we take for granted that in magnetic insulators the magnetism occurs by direct 
(Heisenberg) exchange, eventualy by superexchange, whereas in metals delocalized electrons are 
involved, with ferromagnetism occuring either owing to the Coulomb intrasite repulsion, or to the 
coupling of localized spins with delocalized electrons, it is difficult to anticipate which mechanism will 
prevail in the case of semiconductors. The Zener model seems a promising candidate, but it is easy to 
see from the above formulas (20-27) that both the molecular field constant and the deepness of the 
potential well Eferro(Sd), which is suspected to characterize the stability of the ferromagnetic phase, 
decrease by increasing the density of delocalized charge carriers nc. Typically, in semiconductors nc ~ 
1018 - 1025 m-3, whereas for achieving a diluted magnetic semiconductor with observable and usable 
magnetic properties, a minimum doping with magnetic ions of a few atomic percents is needed. 
Consequently, nd ~ 1027 - 1028 m-3, therefore the ratio (nc/nd) will be low. Also, one generally uses 
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doping atoms with as large as possible individual moments (from Cr with Sd
(max) = 5/2 to Co with Sd

(max) = 
1). In these conditions, equations (20) or (25) yield large values for opt., thus one has to infer that the 
conduction electrons are fully spin polarized  = 1. In the case of presence or absence of the 
antiferromagnetic coupling Jdd < 0, the atomic energy barrier will be given by: 
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 (32) 
 
If Jdd  ≠ 0, the local minima are realized at ± Jcd / (4|Jdd|), whereas if Jdd  = 0 the minimum energy is 
realized for maximum absolute value Sd

(max). 
The consequence of the above formula is that, in the framework of the Zener model, there is little hope 
to control the stability of the ferromagnetism by varying the density of charge carriers. If, additionally, 
the magnetic impurities are donors or acceptors, nc = nc

(0) + n, with nc
(0) the electron or hole 

concentration induced by the magnetic ions, and n the electron or hole concentration which can be 
modulated by external parameters. Now, nc

(0)  will be on the order of nd, and n << nd. Finally, a similar 
effect will be obtained, in the low possibility of ferromagnetism control via the modulable density of 
carriers in the semiconductor. This is the reason for which we tackle in this paragraph a more 
sophisticated, widely accepted model in the physics of diluted magnetic semiconductors. 
The RKKY model was proposed in the 1950’s by Ruderman, Kittel, Kasuya and Yosida [26-28] and 
analyzes again the coupling between the individual spin moments by conduction electrons. In the 
following, we shall sketch a brief derivation of the RKKY formula, starting with perturbation theory. 
 
a) The s-d exchange integral 
 
Let us set atom A in the origin, and consider a localized electron described by the Wannier (atomiclike) 
function A (r) ≡ 0 (r). Consider a second electron described by a Bloch function b (r) [29]: 
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normalized such as 
2323 |)(||)(| rr kk urdrd  
, where  is the volume of the crystal. We neglect the 

first three terms from (1), by considering atom B far apart from atom A. Thus, RB → ∞ and the terms 
with RAB

-1 and rB1
-1 vanish in (1). The term containing rA2

-1 may be shown to vanish owing to the d 
character of 0 (r) combined with its localized character. Indeed, an integral such that ∫d3r uk*(r)exp(- 
ik∙r) (- Z/r)0(r) must be computed: the exponential may be developed in series, the z axis is chosen 
along the direction of k, and the first two terms of the development of the exponential are orthogonal 
to 0(r). This is approximation is valid for kR0 << 1, where R0 is the dimension of the state 0 (see below). 
At the end of the actual derivation, we will prove the fact that the interesting values of the wavevector 
k are related to the inverse of the separation between two insulated magnetic ions, i.e. k is much lower 
than the inverse of the estimate ‘dimension of 0‘. 
The last term of the exchange integral (1) is written as: 
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Let S be the spin of the Bloch electron, and S0 the localized spin. The Heisenberg exchange energy may 

be written as the mean value of the ‘exchange operator’ ̂ : 
 





 )(|ˆ|)(
2

2 rr
SS

SS kk
0

0 kkJ
  (35) 

 
while this operator acts following the rule: 
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In the following, we evaluate the intensity of the double exchange interaction. Let us set uk = const. in 
the Bloch function (29) and consider 0 (r) confined inside a sphere of radius R0, and volume w0. It 

follows < ̂> ≈ 3e0
2w0 / (2R0). The order of magnitude of the double exchange interaction is the volume 

of the localized state times the Coulomb energy corresponding to that state. If R0 ≈ 1 Bohr radius (aB), 
one obtains about 3 Ry x w0, where e0

2 / aB = 2 Ry ≈ 27.2 eV. For a comparison with the orders of 
magnitude encountered previously for direct exchange interactions, one has to sum this energy over all 
electrons from the crystal (N) and divide by the total volume of the crystal. A factor Nw0/ occurs, 
which may be regarded as the ‘filling’ of the crystal with localized electrons. For R0 ≈  2 aB and the 
volume of a Wigner-Seitz cell of about 125 aB

3, one obtains an estimate for the indirect exchange 
energy of 1.4 eV, which is a robust value. 
 
b) Perturbation theory 
 
A further approximation made in the derivation of the RKKY interaction is the use of non-degenerate 
perturbation theory for the Bloch functions, although it is clear that the energy spectrum of electrons 
in a crystal is rather degenerated (e.g. for free electrons there is a complete angle degeneracy, for tight 
binding theory there is also degeneracy, etc.) 
In the following, we recall briefly the results of the non-degenerate perturbation theory. When the 

Hamiltonian of a system may be expressed as 10
ˆˆˆ HHH  , where for the first term one knows the 

eigenfunctions and eigenvalues 
)0(

0
)0(

0
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iii EH   ,  with normalization iji j   )0()0( | , and the 

second term 1Ĥ  can be treated as a perturbation, the energy and the wavefunction of the system may 
be developed in series on the ‘order of perturbation’: 
 

    






0

)(

j

j
nn EE

; 






0

)(

j

j
nn 

  (37) 
 
The first orders of perturbation theory give the following results: 
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i) 0th order: the energy is that of an eigenstate n nn EE 0
)0(  , the wavefunction is one of the 

eigenfunctions of 0Ĥ : 
)0(

n . 
 
ii) 1st order: the energy correction is the average of the perturbation computed on the unperturbed 
state: 
 

 )0(
1

)0()1( |ˆ| nnn HE  ; the wavefunction is: 

 




nk
k

kn

nk
n

EE

H )0(
)0()0(

)0(
1

)0(
)1( |ˆ|






  (38.1) 
 
iii) 2nd order [30]: 
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          (38.3) 
 

We apply now this theory for computing the influence of the exchange operator ̂  on the system 
described by Bloch electrons interacting with localized electrons. 
Let us first remark that in the 1st order one obtains a contribution to the energy ressemblying equation 
(35), containing the scalar product between the localized spin S0 and the spin of the itinerant electron 
S. This contribution vanishes when one sums over the orientations of S, in other words one considers 
that the itinerant electrons are not spin polarized (n↑ = n↓) which, of course, consists an approximation 
even with respect to the Zener model. In the case n↑ ≠ n↓, when Stoner ferromagnetism manifests 
[15], the first order correction in perturbation theory might not be neglectible.  
Back to the RKKY model, one considers the interaction Hamiltonian as being the sum of two 

contributions, corresponding to localized electrons situated at two different sites, 1 and 2: - 2 S1∙S0 1̂  - 

2 S2∙S0 2̂ . The indices 1 and 2 refer to the origin of the Wannier function in the equilibrium position of 
the two atoms 0 (r - R1) sau 0 (r - R2). We write down now the 2nd order correction to the energy. It is 
straightforward that in the sum (38.2) components such as (S1∙S)2, (S2∙S)2 si (S1∙S) (S1∙S) appear. Terms 
containing the first two factors are not interesting for the problem of coupling between S1 and S2, 
therefore only crossed terms will be retained from the sum. The energy correction may be written as: 
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This is valid for the interaction between S1 and S2, intermediated by one Bloch electron. The total 
interaction is computed by summing over all Bloch electrons: 
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In Ref. [26], a similar expression is obtained starting with collision theory, but we considered that the 
actual treatment is more rigorous and also allows the explicitation of the exchange operator, together 
with the evaluation of its matrix elements.  
Summing over S transforms the front factor in (S1∙S2)/2. The sum over the wavevectors k becomes an 
integral following the well-defined rules from solid state theory. In order to compute the matrix 
elements, one uses again the localization property of the Wannier functions, which allows the 
factorization and removal from the integral of the plane wave component of the Bloch functions, 
according to the rule: 
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with j =1,2 and R12 = R2 - R1. A formula is obtained, which in fact is the starting formula from Ref. [26]: 
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c) Computing the RKKY interaction. Orders of magnitude 
 
In the following, two more approximations are made: (i) One considers the matrix elements of the 
exchange operator as a weakly varying function on k and, since the most important contribution to the 
integral (42) comes from the region near the Fermi energy k ~ k' ~ kF, one approximates kk' k'k ≈ 
|kFkF|

2 ≡ ||2. (ii) One considers that the conduction electrons are behaving like free particles in the 
crystal, with a dispersion law such as  (k) =  (k) = ħ2k2 / (2m*), with constant effective mass m*. 
 The final result, as derived in Ref. [26], is: 
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For estimating orders of magnitude, we recall from above that || is about 3 Ryd x w0. One uses 1 Ryd. 
= ħ2/(2ma0

2), and for R0 = aB, the constant before the oscillating function x cos(x) - sin(x), where x = 
2kFR12, without the spin factor (S1∙S2), is found as being about 86 meV x (aB / R12)4. 
The next step is to compute the equivalent of the molecular field constant. In this case, one has to 
average over all spins S2 from the solid around S1. Assuming that these spins are uniformously 
distributed in the solid, with the density nS and by using a continuous limit, the integral of (43) in 
spherical coordinates can be solved exactly, by noticing that (sinx/x)’ = (xcosx - sinx)/x2. It follows that, 
if one supposes that all spins S2 are aligned, the most favorable state implies an antiferromagnetic 
ordering of S1 with all S2’s. If in the integral one introduces a lower cutoff distance R0, assuming that 
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spins cannot be separated by a lower distance than R0, the total interaction is described as: 
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and this makes sense only when sin(2kFR0) < 0, since we supposed that the system is ferromagnetic, by 
considering all spins S2 alligned. The first region where this happens is  < 2kFR0 < 2. 
Another development can be made, by assuming that S2 spins are oriented ferromagnetic or 
antiferromagnetic with respect to S1, according to the sign of the exchange integral. This implies the 
evaluation of: 
 

  

dx
x

xxx
nk

h
mSSRkE

R

S 





0)or  (

2F2

2

2112F

0

sincos*||),(

  (45) 
 
This energy is always negative, i.e. the apparition of the RKKY interaction implies a state more stable 
energetically. But here anything can no longer be said on the occurrence of ferromagnetism or 
antiferromagnetism in the system (both kind of couplings occur), not to speak that frustration was not 
taken into account. 
Finally, a last approximation which may be discussed is to suppose that each spin S1 interacts with the 
 nearest neighbouring spins S2, placed at an average distance R0. Assume that S2 = <S>, then a Weiss-
like interaction (per unit volume) is derived: 
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which, of course, makes sense only when the oscillating function inside the square brackets is positive, 
i.e., for instance, the first region where this happens is 4.493 < 2kFR0 < 7.725 (solutions of tanx = x). The 
molecular field constant, starting with equation (44), may be written as: 
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where the formula connecting the Fermi wavevector and the density of free carriers in a solid, in the 
free electron approximation kF = (32nc)

1/3 was used, together with the assertion that nS ≈ R0
-3. 

Starting with equation (45), the molecular field constant yields: 
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Of course, in both cases, one needs to consider only situations with  > 0. It is interesting to note that, 
in the case of equation (47), which is obtained by integration over the whole system of spins S2, with 
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the introduction of a minimum cutoff R0, the molecular field constant does not depend on the density 
of spins and has a weak dependence on the density of conduction electrons. The case when the closest 
neighbors are considered only, equation (48), has a more complicated dependence. 
For m* = me (electron’s rest mass) and for the above evaluation for  (3 Ry x w0, with w0 the volume of 
a sphere of radius aB), it follows that the molecular field constant may be important in the case of RKKY 
interaction, yielding e.g. 350 x sin(2kFR0) / R0(Å) from equation (46). A mutual average separation 
between spins of 1 nm leads to quite rectangular hysteresis loops. From equation (47), similar values 
are obtained, just a factor /(2) appears additionally, before the oscillating function. 
Equations (47-48) are exactly what we desired at the beginning of this study, expressions for the 
‘molecular field constant’ connected to the density of charge carriers in the semiconductor. These 
dependencies are represented in Figure 4.4.  
 

 

 

 
FIGURE 4.4  
Molecular field constants obtained from the RKKY theory, according to two ways to estimate the total interaction 
of a spin with the others: (a) evaluation of the total interaction, with a cutoff at a minimum distance R0, connected 
to the density of spins such as nS ≈ R0

-3, yielding equation (47); (b) keeping just the interaction with nearest-
neighbors, situated at the distance R0, yielding equation (48).  was set to 1 and the multiplicative factor results 
from the evaluations described in the text 
 
According to equation (47), ferromagnetism occurs if 0.13 < (nc/nS) <1.05. According to equation (48), 
one needs 0.38 < (nc/nS) < 1.95. The criterion for Zener ferromagnetism, equation (23), yields (nc/nd) < 
Jcd

2 / (2JddW) ≈ 0.01-0.1, where W = 1/gc(F) is the bandwidth of the s electrons. The ranges of the ratio 
between the density of conduction electrons and that of spins is different from the Zener model to the 
RKKY. On the other hand, most metals, when introduced into semiconductors, are strong dopants 
(most often acceptors, but also sometimes donors), therefore nc/nS is closer to 1 than to 0.01-0.1. 
Therefore, the RKKY model seems more appropriate to describe ferromagnetism in diluted magnetic 
semiconductors than the more empirical Zener model. 
The big success during the last decade in synthetizing II-VI or, more specifically, oxide diluted magnetic 
semiconductors suggests that even when nc/nS exceeds 1, ferromagnetism occurs. Therefore, it seems 
that the model described by equation (48), which is, finally, just the RKKY interaction without any 
averaging, by considering only closest magnetic impurities, is more appropriate. In the following, we 
shall investigate in the framework of the present theory the case of Mn diluted in germanium. It will be 
seen that all concepts developed so far: Zener and RKKY indirect exchange, together with 
superparamagnetism and spin glasses, will be employed in order to explain the experimental data.  
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Summary of exchange mechanisms and their fingerprints in M(H, T) behaviors 
 
The magnetization dependence on temperature may be extracted from equation (9), while the 
remanent magnetization and the coercitive field are expressed by equations (8). In these equations, 
two parameters are important, denoted by a and b. We recall that b = 0rnmax

2/kBT, therefore b may 
be expressed as T0/T, with a straightforward significance of T0. The parameter a is b times the 
molecular field constant a = b, and , in some models (Zener and RKKY), is also dependent on 
temperature via the density of charge carriers in the semiconductor nc. For n or p doped 
semiconductors, the concentration of charge carriers may be extracted from the neutrality condition in 
the semiconductor [31]: 
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  (49) 
 
where ED (EA) represent donor (acceptor) levels, Ec is the conduction band minimum, Ev the valence 
band maximum, ND (NA) the concentration of donors or acceptors, and Nc (Nv) the conduction (valence) 
density of states (per unit volume, not per unit energy). Integrating formulas from (49), no matter 
which is the conduction type, into the Zener or Stoner-Zener molecular field constant (24) or (26) yields 
the following dependence of a: 
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An eventual existence of a constant density of charge carriers superposed to the density whose 
characteristic is semiconductor-like is absorbed into the term K3/T, which contains also an eventual 
direct exchange interaction between the spins.  
For the RKKY model, the dependence is slightly more complicated: 
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where the eventual existence of a constant density of charge carriers is expressed by the constant K4, 
and an eventual direct exchange interaction is expressed into the constant K5. The function F(1,2)(x) is 
either (- sin x), or (x cos x - sin x), if formulas (47) or (48) are used, respectively. 
The above formulas admit simplifications for high temperature, low temperature cases or for high 
doping levels (degenerate semiconductors). However, in the following we shall use these general 
formulas, by taking advantage of the actual state of computing machines in performing simulations of 
the experimental curves. 
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The case of manganese diluted into Ge(001) 
 
Overview 
 
As mentioned in the Introduction, amongst diluted magnetic semiconductors, MnxGe1-x is a promising 
candidate owing to its high Curie temperature [32,33]. Surface science techniques often succeeded in 
the past in stabilizing metastable phases of manganese with ferromagnetic or ferrimagnetic properties 
[34-36]. In germanium, solid state compounds such as Mn13Ge4, Mn11Ge8, Mn5Ge2, Mn5Ge3, Mn3Ge2 are 
known to date [37], of which only Mn5Ge3 is reported to be ferromagnetic. This compound seems to be 
the origin of the detected ferromagnetism in Mn-Ge 'diluted magnetic semiconductors' [38-40]. Hence, 
despite the relative success in stabilizing ferromagnetic Mn-based phases on Ge(111) [35,36,38,39,41], 
it is highly desirable to find a simpler route to syntesize Ge-Mn-based compounds, possibly richer in 
germanium, in order to provide less metallic character, to offer the possibility of triggering 
ferromagnetism by varying the charge carriers, and to be appropriate for integration with Si-based 
electronics. 
Some recent reports demonstrated enhanced magnetic properties just by annealing to promote Mn 
interdiffusion with Ge [42]. Superparamagnetic Mn-Ge compounds are reported [43]  and might be 
appropriate for applications in magnetic sensors directly integrated on semiconductors [32]. Note also 
that the interesting surface for applications in microelectronics is Ge(001), whereas the majority of 
studies that succeeded to stabilize Mn-based ferromagnetic compounds processed the Ge(111) surface 
up to now. 
Recently, room temperature ferromagnetism in Mn:Ge(001) systems via a 'subsurfactant epitaxy' 
method subsequent to the deposition half a monolayer of Mn on Ge(001) was achieved [36]; however, 
in this case, the relatively low Mn content obtained (about 0.25 %) precludes further applications in 
magnetic devices. The synthesis of a Ge-rich phase (~ MnGe2) was also achieved, organized in 
nanocolumns, providing a Curie temperature over 400 K [44]. However, a previous work from the same 
team on such columnar structures did not succeed to synthesize room temperature ferromagnetic 
material [36,45]. This points out the quite delicate conditions required by using co-evaporation of 
manganese and germanium on Ge(001) in order to achieve robust magnetism. Also, connected to 
Section 2, it might be inferred that the oscillatory character of the RKKY interaction makes the 
occurence of ferromagnetism quite delicated. 
A simpler route for synthesizing such magnetic systems is the 'solid phase epitaxy' [40,46], where Mn is 
simply deposited on Ge single crystals either at room temperature, with subsequent annealing, either 
directly at a more elevated temperature. So far, results were reported on Ge(111) surfaces [35,46-49]. 
A Mn5Ge3-induced superstructure of (√3 x √3)R 30°  was observed by reflection high energy electron 
diffraction (RHEED) in [35,46], and by low energy electron diffraction (LEED) in [47], whereas all reports 
point on a strong decrease of the saturation magnetization near room temperature. Nevertheless, 
room temperature ferromagnetism was reported in Refs. [40,47,49] and a weak magnetic moment at 
room temperature seems also to be provided by the studies reported Ref. [46]. Comparatively, there 
are no reports on surface structure or eventual reconstructions, nor on magnetic properties for 
Ge(001) subject to a solid phase epitaxy, despite the fact that this surface may be connected to the 
technologically important Si(001) surface.   
In the following, we will report on LEED and high resolution transmission electron microscopy (HRTEM) 
observations, together with superconducting quantum interference device (SQUID) measurements on 
Ge(001) subject to Mn deposition at relatively high temperatures (250-350 °C). Below 250 °C substrate 
temperatures, no room temperature ferromagnetism is detected. The preservation of the Ge(001) 
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surface upon deposition of a considerable amount of Mn (the equivalent of 100 nm of bulk manganese) 
is observed, together with a ferromagnetic hysteresis loop at room temperature. 
 
Structure and morphology (LEED, HRTEM) 
 
In Ref. [47], Fe layers of up to 12 ML (≈ 17 Å) were deposited on Ge(001) at 500 °C and the LEED images 
still exhibited a clear (1 x 1) pattern, which is a sign of Fe diffusion inside the Ge single crystal. This 
result is at variance with similar experiments on Si(001), where Fe deposited at room temperature did 
not show any LEED pattern, and at high temperature exhibited some spots only for very few layers 
deposited [48,49]. The case of Sm deposited on Si(001) was more promising, in the fact that broad 
LEED spots were visible for high temperature depositions (300 °C) up to ~ 3 nm effectve Sm thickness 
[50,51]. Therefore, as a general rule, deposition of highly reactive metals (which is the case of magnetic 
metals, owing to their incomplete valence shells) on semiconductors strongly affects the 
semiconductor surface and promotes the formation of various interface compounds. 
  

 
 
FIGURE 4.5  
Low energy electron difraction (LEED) patterns for Ge(001) on the panels above, and for Mn deposited on Ge(001) 
at 350 °C (panels below). Each image is indexed with the energy of incoming electrons. For better clarity, negative 
images of the true LEED photographs are displayed. The (1 x 1), (2 x 1) and (1 x 2) spots are highlighted on one 
LEED image for clean Ge(001). Reproduced from Ref. [52] 
 
The case of manganese deposition on Ge(001) (2 x 1) was surprising, as compared to the above 
situations. Figure 4.5 presents LEED patterns obtained on clean Ge(001) wafers and after the 
deposition of a huge amount (the equivalent of 100 nm) of Mn at 350 °C substrate temperature [52]. 
One can see that not only the surface is ordered, but even the (2 x 1) resonstruction is preserved. Ref. 
[52] presents also scanning tunneling microscopy (STM) images, where the Ge dimers were visible also 
on the surface after Mn deposition, only the Ge-Ge distance of these dimers increased slightly over Mn 
deposition. This is an immediate evidence that manganese diffuses deep inside the Ge(001) wafer, 
preserving its surface. Therefore, the Mn-Ge system is a promising candidate for a ferromagnetic 
system leaving unaffected the semiconductor surface at atomic level. 
The next step was to investigate in cross section the eventual formation of identifiable structures. 
Figure 4.6 presents a cross-sectional HRTEM image, where the formation of agglomerates of a few nm 
dimension was identified. The Fourier transform of these selected areas (the equivalent of selected 
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area electron diffraction) allowed one to identify spots corresponding to the hexagonal close packed 
Mn5Ge3 structure. The interplanar spacings of  the reciprocal lattice points indexed in Fig. 4.6(b) are 
6.20, 5.08 and 3.90 Å, for the planes  (100), (001), and  (101), respectively. These values are in a very 
good  agreement with the corresponding theoretical distances for the Mn5Ge3 compound  6.22, 5.05 
and 3.92 Å, respectively, with unit-cell parameters: a = b = 7.18 Å and c = 5.05 Å [53]. 
 

 

 

 
FIGURE 4.6  
(a) Cross section HREM image of an area of  MBE MnGe layer deposited at 350 °C; (b) the associated FFT pattern 
showing  the presence of  Mn5Ge3 (electron beam direction [010]). Adapted from Ref. [52] 
 
Therefore, up to now we obtained the information that Mn diffuses inside the Ge(001) wafer and forms 
Mn5Ge3 and, possibly also Mn8Ge11 structures with a few nm lateral size [52]. The next question 
regards whether all manganese diffused into Ge(001) is involved in the formation of these 
nanoparticles or just a part of it. We note here that extended X-ray absorption fine structure (EXAFS) 
measurement at the Mn K-edge on samples grown at temperatures starting with 250 °C evidenced 
mainly 6 Ge neighbors for each Mn atom. EXAFS was a technique analyzing a large area of the samples, 
therefore this result represents an average. If the majority of Mn atoms were in Mn5Ge3 or Mn8Ge11 
structures of 4-7 nm lateral size, Mn-Mn neighboring should have been easily detected.  It is therefore 
questionable whether in some parts of the sample a truly diluted magnetic semiconductor is formed, 
with Mn embedded into germanium, and not just the known Mn-Ge aggregates of various 
stoichiometries. This will be addressed by X-ray photoelectron spectroscopy (XPS) and by magnetic 
measurements in the following paragraphs. 
 
Composition (XPS) 
 
Figure 4.7 presents XPS measurements of the Mn 2p, Ge 2p and Ge 3d core levels. An extended 
analysis of these data, with constant referencing to the existing literature, is available in Ref. [52]; in 
the following we will outline the main results. 
The Ge spectra (both 3d and 2p) are characterized, upon Mn deposition, by a main photoemission line, 
together with a smaller component shifted by about 0.64 eV (Ge 3d) and 1.15 eV (Ge 2p) towards 
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higher binding energies. By comparison with the case of clean Ge(001) (2 x 1), an immediate attribution 
of this component is that it belongs to the observed Ge dimers at the surface, according to the LEED 
patterns and to the STM images. Therefore, if Ge has reacted with Mn, the formed compound has a 
quite close binding energy to the Ge atoms from Ge(001) single crystals. 
The Mn 2p spectrum (Figure 4.7(c)) was reasonably simulated with three spin-orbit split doublets only. 
There are two narrow lines with low binding energies (638.50 and 639.24 eV for the 2p3/2 component), 
and one broader line with higher binding energies (640.61 eV). This last component was attributed in 
the past as being a satellite of atomic origin [54], whereas in Ref. [52] it was attributed to the formation 
of Mn5Ge3. Anyway, without entering too much into details, there are at least two kind of manganese 
atoms (from the point ov view of their chemical states), whereas the Ge chemical state seems to be 
unaffected by manganese deposition. Therefore, there are good chances that some other Mn 
containing structure is formed, apart from the observed Mn5Ge3 (and Mn11Ge8) clusters by HRTEM. 
Last but not least, band bending effects could eventually be taken into account. The Ge work function is 
5.0 eV, whereas the Mn work function is 4.1 eV [55]. Therefore, for a sharp Mn-Ge interface, a 
maximum band bending of 0.9 eV towards higher binding energies is expected to occur [55-57]. The 
energy difference between the two ‘sharp’ components of Mn 2p is 0.74 eV, therefore one may also 
attribute the higher binding energy component to surface manganese, subject to the band bending 
downwards, as expected from a Schottky interface between a semiconductor and a metal with lower 
work function. Similar shifts are presented also by the Ge spectra. Thus, one may also formulate the 
hypothesis of chemically homogenous material formed, with a single chemical state for both 
manganese and germanium. 
 

   
 
FIGURE 4.7  
X-ray photoelectron spectroscopy (XPS) results: (a) Ge 3d core levels; (b) Ge 2p core levels; (c) Mn 2p core levels. 
For (a) and (b), the spectra obtained on a clean Ge(001) (2x1) are also represented. All spectra are fitted by using 
Voigt doublets and integral inelastic backgrounds (see the Experimental section for details). Inserts in (b) are 
detailed regions of the Ge 2p3/2 core level. Adapted from Ref. [52] 
 
Magnetic properties (SQUID) 
 
It is therefore crucial to test the magnetic properties of the Mn-Ge system. In Ref. [52], magneto-
optical Kerr effect measurements are presented, showing a small, though distinguishable, hysteresis 
loop. Another unpublished series of experiments yielded the dependence of the MOKE signals with the 
substrate temperature during Mn deposition: no hysteresis was observed for deposition temperatures 
below 250 °C, whereas the EXAFS signals for such samples exhibited a large majority of metal 
manganese (Mn surrounded by 12-13 other Mn atoms). The MOKE signal was analyzed, by assuming 
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that the majority of the signal is presented by a superparamagnetic component (i.e. a Brillouin 
function, equation (4) was used), and the magnetic moment derived for this component exceeded 104 
Bohr magnetons. This would correspond to the formation of some nanoparticles with a lateral size of 
about 3 nm, similar to that observed by HRTEM. Therefore, an attempt of assignment was made that 
the superparamagnetic component belongs to the Mn5Ge3 (Mn11Ge8) clusters, whereas the remaining 
ferromagnetic component has another origin, possibly Mn diluted into Ge(001), therefore a diluted 
magnetic Mn-Ge semiconductor may be formed in a quite simple way by evaporating Mn on Ge(001) 
held at high temperature (solid state epitaxy [40]). 
In view of all theoretical considerations developed in the first part of this Chapter, the presence or 
absence of a DMS-like phase may be investigated in deeper detail. Figure 4.8 presents thermo-
magnetic curves M(T) measured by SQUID. The fact that a superparamagnetic phase is present in the 
film is immediately visible from the zero field cooled - field cooled (ZFC-FC) curves. As expected from 
superparamagnetism, the magnetization of the ZFC is low at low temperatures, increases with 
increasing T and reaches a plateau, which probably is obtained from separate maxima corresponding to 
the release of magnetization direction (‘unblocking’) in nanoparticles of various sizes (see § 2.2.e for 
more details). 
But a more surprising result from Figure 4.8 is the occurence of a peak even in the FC branch. Normally, 
when cooling an ensemble of ferromagnetic + superparamagnetic phases in applied field, the effective 
magnetization of both phases should just increase with temperature. This may be well simulated also 
by using the formula (9) from the first Section. 
The peak in the FC curve may have two explanations: (a) a spin glass like state, see § 2.2.f; (b) the fact 
that the exchange integral depends on temperature and, eventually, has a peak at a given temperature 
or increases at higher temperatures; in the latter case, a competition between a stronger exchange 
integral at higher temperatures and an increased thermal disorder could eventually yield a peak. 
Exchange integrals varying with temperatures are a sign of indirect exchange intermediated by carriers 
in the semiconductor, whose concentration is clearly varying by orders of magnitudes with the 
temperature. 

 

 

FIGURE 4.8  
Superconducting quantum inteference device (SQUID) measurement of the Mn-Ge(001) sample obtained by 
deposition of 100 nm Mn on Ge(001) held at 350 °C. The main graph with blue symbols and lines represent zero 
field cooled - field cooled magnetization measurements (see text for details). The inserts represent magnetisation 
hysteresis measurements at the specified temperatures. Adapted from Ref. [52] 
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Attempts to simulate the FC curve by using the Trachenko model [25] were not successful (M ~ A + bT2 
at low T, M ~ C/T at high T). The simulation by using various theories for DMS is more complicated and 
will be detailed below. For the beginning, we found simpler to extract the coercitive fields from the 
hysteresis curves recorded at various temperatures and to simulate them by using equation (8.2), by 
using various models for the parameters a and b: b = 0rnmax

2/kBT and a is described by equations 
(50-51). The results are represented in Figure 4.9. 
 

 
 
FIGURE 4.9  
Dependence of the coercitive field with 
temperature, together with fits using formulas 
(8.2), (50) and (51) for Zener and for the two 
models of RKKY interactions, respectively. 

 
 
 
FIGURE 4.10  
Simulations of the thermo-magnetization curves 
by using a superposition of ferromagnetic 
components, one with ‘normal’ exchange and one 
with RKKY interaction. 

 
Attempts to use a ‘normal’ ferromagnetic phase (with both a and b ~ 1/T) were not successful to 
simulate the modulation superimposed on the constant decrease of the coercitive field with the 
temperature. The Zener model, equation (50), could yield some modulation, but the result of this 
simulation is of far lower quality than that of the simulation by using both RKKY models. Note that we 
assumed donor conduction in Ge(001), but all results may be valid also for acceptors, with the 
straightforward replacements, according to equations (49).  The extracted parameters from the fit are 
given in Table 4.1. 
One may remark that it is hard to derive values for some interesting physical quantities (e.g. the 
average atomic spin S, the relative permeability r, or the value of various energies involved in the 
models), since most fitting parameters yield combinations of these quantities. The fact that the RKKY 
model works fine may be tested from the value of (Ec - ED), which yields about 0.18-0.22 eV, slightly 
lower than the Ge bandgap (0.6 eV). Also, a ferromagnetic phase coexists with the RKKY phase, with 
|Jdd|S2 ~ 0.18 eV. By assuming S ~ 1, this ferromagnetic phase would have a Curie temperature of 
about 300-350 K and indeed this is what one observed in the thermo-magnetization curves (Figures 4.8 
and 4.10). 
Coming back to the DMS-RKKY phase, it is to be noted that the obtained density of dopants largely 
exceeds that of the spins, therefore a majority of dopants of other nature (e.g. defects) are present in 
the semiconductor, apart for the manganese atoms. There are also charge carriers of almost constant 
concentration n0, most probably some parts of the sample exhibit metallic behavior. The concentration 
of these ‘intrinsic’ donors is on the same order of magnitude as that of spins nS, therefore most 
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probably these carriers are produced by the manganese atoms. Also, the parameter b, which is 
combination of the permeability of the material and of the spin yields values of 0.13-0.14. From the 
significance of this parameter listed in Table 4.1 it appears that clearly one has to introduce a relative 
permeability r of almost 105. 
  
TABLE 4.1  
Interpretation and values of fitting parameters of the coercitive field dependence on temperature Hc(T) from 
Figure 4.9 and of the thermo-magnetization curves M(T) from Figure 4.10 
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Note also the high similarity obtained within both RKKY models used; therefore, at this level it is hard 
to decide which is the most appropriate. 
The thermo-magnetization curves M(T) were also fitted by using the m(h) formula given by equation 
(9); the results are represented in Figure 4.10. In this case, the simulation needed to introduce a 
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ferromagnetic phase, whose saturation magnetization (as fitting parameter) increases with the applied 
field, according to Table 4.1. In view of the comments of Ref. [52], we could eventually infer that this is, 
in fact, superparamagnetic and might be connected to the Mn-Ge clusters observed by HRTEM; but the 
puzzle is that the product rS is close to unity for this phase. Also, in zero applied field, this is the only 
phase that remains in the simulation. In fact, it was quite astonishing that, when ending the simulation 
of the 500 Oe case, just by setting both (bh) parameters to zero and the overall magnetization of the 
DMS-RKKY phase also to zero, one obtains a curve fairly close to the experimental M(T) for zero applied 
field. Thus, one has to reconsider the value of the spin for the RKKY phase, the introduction of the 
relative magnetic permeability, and also its nature. 
Therefore, it is the spin of the DMS RKKY phase which has a high value (about 83,000) in the Hc(T) 
dependence; this corresponds to aggregates formed (approximately) by cubes with about 35 atoms on 
each edge, by assuming that the individual atomic spins are S0 = 2. These aggregates are close to the 
observed Mn5Ge3 clusters, therefore, in addition to Ref. [52], we may affirm here that these aggregates 
are superparamagnetic and their mutual interaction is RKKY. Such behaviour were to be expected from 
very first principles from the HRTEM image; however, RKKY coupling between individual 
superparamagnetic nanoparticles is still a novelty and first sound reports just start to appear in 
literature, see. e.g. Ref. [58]. The term ‘superparamagnetic’ is maybe not that appropriate to describe 
this phase, since we have seen that it presents a coercitive field and exchange interaction between 
nanoparticles; but, at the same time, its contribution vanishes in the M(T) curve. This may be also 
connected to the observation time and to the magnetic history: when just the demagnetized sample is 
cooled down in zero applied field, this phase does not manifest a net magnetization; when the sample, 
even at lower temperatures, experiences higher magnetic fields, this induces the re-orientation of the 
magnetic moments and stimulates the apparition of the RKKY interaction, within the observation time. 
The remaining, majoritary (from the magnetic point of view) component of ferromagnetic nature still 
needs to be explained. It may correspond to a diluted magnetic state where the magnetic ordering is 
characterized by nearly constant exchange integrals with temperature. Eventually, this may also 
correspond to a metallic character of this phase. A further support for the hypothesis of a metallic 
phase comes indirectly also from the analysis of an eventual band bending effect in the XPS data. 
Though not directly observed by our HRTEM measurments, the formation of nanocolumns, as reported 
in Ref. [44], cannot be precluded. 
The reader may ask also why this ferromagnetic phase was not needed in the simulations of Hc(T) 
(Figure 4.9). In fact, the overall dependence of the coercitive field in the presence of two phases with 
different coercitivities is difficult to be estimated (in any case, it is not just the sum of the two 
coercitive fields). One may suppose, for instance, that the coercitive field of the ferromagnetic phase is 
considerably lower than that of the DMS-RKKY one; for instance, it may be shown that Fe deposited on 
Si(001) has a quite low coercitive field, about 0.7 Oe [48], whereas pure Fe has a coercitivity of about 1 
Oe [59]. Therefore, the main detected coercitivity is that of the DMS-RKKY phase. 
 
 

Conclusions 
 
This Chapter re-analyzes from very basic grounds the basic mechanisms responsible for 
ferromagnetism, by dividing them into direct exchange (Heisenberg and Stoner) and indirect exchange 
(Zener and RKKY). In view of the data that are offered as a support for practicising the newly derived 
formula, the basic aspects of superparamagnetism and of the spin glass state were also briefly 
reviewed. The ‘theoretical’ section offers approximate formulas which one may use for simulating all 
kind of dependencies from the general form of magnetization dependence on applied field and 
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temperature M(H, T): the dependence on temperature of the coercitive field Hc(T), of the remanent 
magnetization Mr(T), or the hysteresis curves M(H). The reader is encouraged to implement these 
formulas (8-9) into any simulation program and to derive e.g. the departure from the Curie-Weiss law 
in ferromagnets near TC, or various hysteresis or thermomagnetic curves. The aim of this methodology 
was to offer a modality to trace the way from the experimental data back to the relevant parameters 
and to derive mechanisms responsible for magnetization (a kind of ‘inverse problem’). 
An example of this data regression on a somehow complicated, though quite actual system: 
manganese-germanium, is presented in the second part of the Chapter. Data from measurements 
other than magnetic are presented in order to characterize as much as possible by other means the 
proposed system. Through the data regression, we were able to simulate in a satisfactory way the 
dependencies Hc(T) and M(T) (field cooled). The novelty of this study is that it pointed out not only on 
the existence of interacting superparamagnetic nanoparticles, but also on the fact that these 
nanoparticles interact mutually by the RKKY mechanism. This phase coexists with a strong 
ferromagnetic phase, described by exchange integrals which do not depend on temperature, at least in 
the temperature range investigated. 
As a whole, the manganese-germanium system presented here exhibits unusual magnetic properties 
and, in our opinion, the most important facts is that it provides ferromagnetism near room 
temperature, and that the behavior of the magnetization with temperature is non-monotonous, being 
described by indirect exchange mechanisms, opening possibilities for some practical applications which 
may lead to an interplay between magnetism with other physical quantities via the density of the 
charge carriers in germanium. 
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