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Introduction 
 
Magneto-optic effects in II-VI semiconductor nano-crystals embedded in borosilicate glass have been 
investigated in a number of preliminary studies up until now.  Considerable interest has existed in the 
Faraday effect in metals and semiconductors, due to the information which could be obtained, 
relatable to elucidation of electronic states, effective masses, and to further the understanding of the 
theory of solids in a magnetic field.  References [1-8] represent a few of many papers concerned with 
semiconductors in this context.  
Following the bulk semiconductors came diluted magnetic semiconductors of the type, AII

1-xMnxB
VI, 

where A is the type II element and B is a type VI element and Mn is the substitutional magnetic ion.  A 
review of these types of materials is given by Furdyna   [9, 10] in which giant Faraday rotation is 
discussed.  The step in proceeding from bulk materials to nanocrystals with respect to measurement of 
enhanced Faraday rotation (but not a non-linearity) has been documented by a number of authors [10-
15].  Here three dimensionally confined diluted magnetic semiconductor clusters of nanocrystalline size 
were synthesized inside a glass matrix.  Wang, et.al [12] observed the effect of size quantization on the 
exciton energy.  They studied the diluted magnetic semiconductors of the type AII

1-xMnxB
VI with the 

magnetic ion being Mn++. This exchange interaction constitutes an interplay between the 
semiconductor and magnetism giving a large Faraday rotation in three dimensionally confined clusters 
[12].  Nikitin, et. al [16] prepared Cd1-xMnxTe nanocrystals embedded in an SiO2 matrix. A study of the 
Faraday Effect in these semi-magnetic semiconductor nanocrystals has revealed large enhancements of 
the effect, when compared to the bulk Cd1-xMnxTe crystal.  Additional evidence for a Faraday Effect 
enhancement has been predicted [17, 18]. 
We have studied both paramagnetic and diamagnetic materials with respect to Faraday rotation 
measurements [19].  In our work with paramagnetic rare earth ions in glasses, we find that Terbium 
oxide provides the strongest Faraday rotation, followed by Dysprosium oxide and Praseodymium oxide.  
The particular rare earth ion and its concentration determine the magnitude of the Faraday rotation, 
while the host glass is relatively unimportant.  For applications requiring large Faraday rotation (or 
large Verdet constants) dilute magnetic semiconductors become rather interesting.  Preliminary work 
on nanocrystal CdS-glass composites have also been carried out by us.  We determined that their 
Verdet constants are at least one to two orders of magnitude greater than SiO2 glass.  Also, there is a 
significant effect of quantum dot size and interatomic lattice spacing on the magnitude of Faraday 
rotation.  There appears to be an effect of homogeneity of quantum dot size on the magnitude and 
nonlinearity of Faraday rotation, as well. We carried out Faraday rotation measurements on three 
dimensionally confined CdS, CdSe and CdTe semiconductor nanocrystals in a glass matrix, where 
particle size and distributions were carefully controlled.  We have a wealth of experience in preparing 
both nanocrystalline semiconductors in glass composites with specified particle sizes and relatively 
small size distribution [20-23].  Low frequency Raman measurements, photoluminescence, x-ray 
diffraction and TEM analysis were employed to determine the particle size of our samples [24]. Even at 
room temperature, the II-VI semiconductor nanocrystals in a glass matrix have demonstrated unusual 
behavior of the Faraday Effect. 
The rare earth containing glasses also showed a non-linearity in the Faraday rotation as function of 
magnetic field strength. However, Faraday rotation data for a single crystal NaCl sample exhibited no 
kinks up to 2.57 Tesla. Various mechanisms will be put forth and evaluated as to the feasibility of using 
these processes to explain the observed effects. We consider Landau levels, resonance effects, shape 
and piezo-electric effects, electron-spin correlation for the quantum dot composites; and intermediate 
range order (IRO) for the rare earth containing  glass matrix itself and try to interpret how each of these 
mechanisms may or may not have an effect on the Faraday rotation behavior.  
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

Theoretical Background and Aspects 
 
Faraday Rotation** 

 
Preliminary Concepts 
 
Faraday rotation occurs when plane polarized light is passed through matter (a sample ) parallel to the 
direction of an applied magnetic field.  The linearly polarized light is a superposition of two circular 
polarizations, one rotating clockwise and the other counterclockwise when viewed along the direction 
of propagation. The application of a magnetic field removes the degeneracy of the resonant 
frequencies for the two circular polarizations.  This results in a difference between their indices of 
refraction.  As a result, one circular polarization will more rapidly pass through the material.  When 
both polarizations emerge from the far end of the sample the recombined plane wave will have its 
plane of polarization rotated with respect to that of the incident light.  More detailed explanations of 
Faraday rotation are given in the literature [19,25-33]. Faraday rotation is also closely related to 
dispersion theory [32] and the Zeeman effect [34,35]. 
The classic equation for Faraday rotation is = V l B  
 
where l is the length of the sample and B the strength of the magnetic field.  The constant of 
proportionality, V, is called the Verdet constant. 
 
** “Actually, this discovery of Faraday (1845) was one of the important contributions to the electro-
magnetic theory of light since it was a connection between light and magnetism” [32]. 
 
 For paramagnetic material the Verdet constant is given by the equation [34] 
 

       Vpara = 4 2 2
chg
m


  ij ij

ijC
)( 22 

 

 
where g  is the Lande` factor; is the Bohr magneton; c the speed of light; h Planck’s constant 
and        the angular frequency of the light.  The terms Cij and    ij are measures of the transition 
probability and energy splitting between the ground state and excited states, respectively.  The term     
s      is the d.c. magnetic susceptibility of the sample which is given by the Curie-Weiss law.  
 For diamagnetic materials the frequency dependence of the Verdet constant derived from a quantum 
mechanical expression has the form [35] 

                                   Vdia = 4   N 2  ij ij

ijC
222 )( 

 

where Cij is a function of the transition moments between the ground state and excited states.       is 
the light frequency;          is the frequency difference of the ground and excited states; and N is the 
number of atoms per unit volume. The Verdet constant of diamagnetic materials is usually temperature 
independent. 
For the non-linear Faraday effects Yu and Osborn [36] extended the theory of the Faraday Effect to 
treat non-linear terms in the electric field.  A Verdet constant proportional to the light intensity was 
derived.  Here, using a two energy level, the rotation of a non-uniform laser beam would be dependent 
on the beam intensity profile Perlin [37] formulated the theory for non-linear optical polarization 



ij


m
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effects in quantum dot materials. He calculated the amplitude and dispersion relation of the cubic 
susceptibility tensor components and their combinations responsible for the Kerr and Faraday optical 
effects. It is shown that the susceptibilities increase smoothly in amplitude below the two-photon 
absorption threshold while remaining negative. Above the threshold, the susceptibilities exhibit sharp 
maxima associated with two-photon resonances.   
   
Faraday Rotation: A Classical Derivation and a Quantum Mechanical Treatment 
 
The following treatment comprises a review of Faraday rotation from the classical viewpoint followed 
by a quantum mechanical treatment [38]. Faraday discovered that the plane of polarized light passing 
though lead borate glass was altered when passing through the poles of an electromagnet. This 
rotation, a general property of matter is of the form, 
 

      (8.1) 
 
Where V is the Verdet constant, l is the length of material through which light travels, and B is the 
magnetic field, in the direction of the light.  This effect arises as a consequence of the different indices 
of refraction for right and left circularly polarized light (n+ vs. n-).  In reality, plane polarized light passing 
through transparent materials exhibits not only a change in the direction of polarization, but also some 
ellipticity.  The rotation of light in a magnetic field, magnetooptic rotation (MOR) is therefore to be 
distinguished from magnetic circular dichroism (MCD), which arises from the differential absorption of 
right and left circularly polarized light, associated with their different absorption coefficients ( k+ vs. k- ). 
Note: For more background and additional specific information and calculations regarding the Faraday 
Effect, and the calculations which follow see references [17-18, 28-35, 38] 
 
Then, with φ as the angle of ellipticity, we have, 
 

     (8.2) 
  
 

    (8.3) 
 

 
Now, before discussing the mechanism of MOR on a quantum mechanical basis, it will be discussed 
from a classical standpoint. 
 
Then, we begin with the equation of motion of a valence electron,  
 

        (8.4) 
 
 

P as the polarization vector, and         = / m , where κ is the spring constant to with  
the fixed atomic site, for the electron.  The equation for P is then, 
 
 
 

0



Nanomagnetism  194 

, ,i t de i
dt

 E P �

22
0mm ie

Ne N Ne
  

   
B PP E P

2 2
0

2
0 p

i
Ne

  
 


  E P B P

2
2

0
p

Ne
m






2 2
0

2
0

2 2
0

2
0

2 2
0

2
0

0

0

0 0

p
x x

y y
p

z z

p

i B
Ne

E P
iE B P

Ne
E P

  
 

 
 

 
 

 
 
 

                   
 

 
 

, 4   B H D E P

 2
0 0 0

0

1
  


    E E P P 

 
0 0,i tE e     k rE D E P 2 2 2 2 2/ ,t k      E E

  2,z z zi ikP k P         P k P P e

zke

 2 2 2 2 2 2
0 z zk c k c P     E e P

 
0 0

1 1
x x y y z zP P P

  
  E e e e

                (8.5) 
 
 
As , then substituting into the above, we have, 
 
 

                        (8.6) 
 
 

                                            (8.7) 
 
 
with .  Now, B = (0,0,B).  Then, 
 
  
 
 
 
 

              (8.8) 
 
 
 
 
 
Then, with Maxwell’s equations in a vacuum, and with  we have, 

 
    (8.9) 

 
 
Then, with  we have .  And,  
 

            (8.10) 
 
where k = .  Then, 
 

               (8.11) 
 
 
As                     , and                                                       , we have,                                                           ,  
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And, subtracting (8.12) from (8.08) we have, 
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As the (3,3) term above, ,  = 0, meaning incident waves will 
 
remain plane waves.  Also given the fact that non-vanishing solutions to the matrix necessitates that 
the determinant be zero, from (8.13) we have, 
 

        (8.14) 
 
 
Then, solving for        and rearranging terms, we have, 
 
 

 (8.15) 
 
 
 
Also, looking at Equation (8.13), corresponding to we         have, 
Then,  
 
 

         (8.16) 
 
 
 
 
And, rearranging terms in Equation 8.15, and using  we have, 
 
 
 

       (8.17) 
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where         is the cyclotron frequency.  This shows that, from a classical standpoint, the alteration of 
the indices of refraction for right and left-circularly polarized light are influenced by an analog of the 
cyclotron frequency, and thence the magnetic field.   

   
Next, we proceed with the quantum mechanical explanation of Faraday rotation. 
Here, we are concerned only with MOR, and therefore will consider only equation (8.2).  Then, we note 
that [17], 
 

  (8.18) 
 
 
where        is the number of molecules in state a, and the electric and magnetic moments are m and µ 
respectively.  Much of the following follows from reference [17].  Then, to first order, the components 
of the complex induced moment vectors are ( ), 
 

(8.19) 
 
with             the electric and magnetic polarizability tensors, respectively.   These tensors are functions 
of the static magnetic field, H, with                                                                . In an isotropic material, such as 
semiconductor quantum dots, the isotropic parts of the tensors may be used.  

Then,
(0) (1)
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and with           as the Kroenecker delta function and with            as the Levi-Civita symbol.  Then, we 
have,  

 
                   (8.20) 

   
      (8.21) 

 
It should be noted that the magnetooptic rotation contains                        terms in                   , etc.  The 
reason for this is the nature of H as a pseudo-vector which, unlike E, does not change signs under 
change from a right to a left-handed frame.  Since on reflection, right circularly polarized light is 
transformed into left circularly polarized light, etc., natural optic rotation is canceled upon reflection.  
However, MOR is not, as the sign of the constant H, Hz, e.g., is reversed upon reflection.  Thus, MOR in 
isotropic materials is an odd function of H. 
 
Then, using the expression for the electric field vector,  
 

               (8.22) 
 
along with Eqs. (8.5) and Maxwell’s equations for light in media, we have [18] 
 

 

   

       

1 { ) ( )a a a a a a a a
a xx yy xy yx xx yy xy yx

a

a a a a a a a a
xx yy xy yx xx yy xy yx

n N i i

i i

        

       

         

      




 
 

c

aN

,α χ
0 (1) ...H       

 

VH   3 5,H H

(8.23) 



Nanomagnetism  197 

(0) (0) (0) (0) (1) (1) (1)1 2 { [ ] }a a a a a a a
a z

a
n N i i i i H                

, ,  

 1 { ) }a a a a
a xx yy xy yx

a
n N i         

1 1
2 2to m m   

And using Eqs. (8.6, 8.7), 
 

    (8.24) 
 

Here, β0 is responsible for ellipticity (circular dichroism) and γ0 is responsible for optical rotation.  
Thus, optical activity in the absence of external constant magnetic fields (native optical activity) is 
associated with β0, γ0.  These in turn, fix those parts of m and µ which are perpendicular to the 

fields of the electromagnetic wave.  Now, α(1)Hz β(0),γ(0).  Thus, native optical activity in the 
absence of external magnetic fields is of similar magnitude to that of magnetooptic activity.  The 
above (Eq. 8.10) also indicates that magnetic optical activity exists as consequent to different 

polarizabilities from those of native optical activity.  Also, note that MOR is consequent to α 
(1)

 a. 
 
Outside regions of absorption, then, and ignoring terms with, [18] 
 
   (8.25)

 
21 22 {1/( )}[ Re{ } Im{ }]a

ja ja
j

a m j j m a i a m j j m a          

                       (8.26) 
 
Here, ω is the frequency of the incident radiation,                                      is the energy difference 
between the jth and the ath states.  The electric polarizability is a consequence of the distortion of the 
occupied states, by the electric field of the other states, j. 
 
Near regions of absorption, we have, [20] 
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(8.27) 
 
With                         a function to make the polarizeability tensor finite at regions of absorption. 
Thus, the         are sums of terms which are in turn dependent upon the transitions between states, and 
their differing energy levels.  The advantage of this approach is that we can observe the effect of 
adding terms regarding different electronic states to the overall refractive index. 
 
It must be mentioned that plane polarized light can be seen as a superposition 
of right and left circularly polarized wave states.  Electrons in spin-down states may experience a 
transition to spin-up states by absorbing      of angular momentum from a right-circularly polarized 
wave.  Similarly, the interaction of a photon with left-circular polarization can cause a transition from 
the presence of a predominance of one type of electronic state will push the Verdet constant to a 
particular direction and magnitude.  Also, the plane polarized wave, as a superposition of right and left 
circularly polarized states can produce bi-excitons, as two different electrons separated by      in angular 
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momentum are simultaneously stimulated. Circularly polarized light, by contrast, can produce excitons, 
exclusively. 
 
Other factors may contribute to energy level transitions of electrons, and thereby influence the size of 
the Verdet constant and its direction.  The magnetic field, as is well known, produces Landau levels, 
with alterations of Faraday rotation, predicated upon transitions between the levels.  Generally, and at 
room temperatures, the effects of Landau levels are washed out by thermal noise, ħωc~kT, where ωc 
is the cyclotron frequency and k is the Boltzmann’s constant. 
Also, the predicted and observed effects of Landau levels on Faraday rotation is the oscillation of 
optical rotation, as electrons in the bulk population are elevated above the Fermi level [21].  It is 
suggested here that such oscillatory effects may not be observed quantum dots with high levels of 
confinement, as these are truly structures of molecular dimension, and the number of electrons 
available for optical stimulation may be on the order of one to three.  Thus, there would be no reserve 
population of electrons to elevate to the Fermi level, as in the bulk material. 
 
In quantum dots, excitons and electrons experience confinement energies due to the effect of an 
infinite potential well.  The coulombic energies of the excitons scale as 1/L, where the confinement 
energies of the infinite potential well scale is 1/L2. At dot sizes of less than 10 nm [22], the confinement 
effects begin to predominate.  Also, the exciton becomes uncorrelated, as the kinetic energy of the 
electron and hole due to the confinement.  Ultimately, the Coulombic interaction of the exciton may, at 
sufficiently high confinement energies, be treated as a perturbation to the confinement energy. 
 
Finally, the exchange interaction of the electron-hole is of greater importance with increased 
confinement, most particularly so, for strong confinement.  This interaction mixes different electron 
and hole spin states, and is, 
 

           (8.28) 
 
where σ are the Pauli spin-1/2 matrices, J are the hole spin 3/2  a0 matrices, is the lattice constant, and 

εexch is the exchange strength constant [17,22].  Here, εexch can be calculated from, 
 

        (8.29) 
 
where aex is the bulk exciton radius. 
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Intermediate Range Order in Glasses: Boson Peaks and Nanoscale Inhomogeneities 
 
The relations of the correlation volume to the distribution of relaxation times 
 
The principal features of relaxation in the vicinity of the glass transition are nonlinearity (i.e. 
dependence of  on structure) and nonexponentiality [39].  The latter property of structural relaxation 
kinetics require a relaxation function 
 
 (t) =  g i  exp(- t / i ) 
 
involving a weighted distribution of relaxation times  i , where t is time and g i  are weighting 
coefficients [39, 40].  Equivalently, the kinetics may be described by an intrinsically nonexponential 
relaxation function, such as Kohlrausch-Williams-Watt (KWW) expression given by [39,40]: 
 
 (t) = exp [- ( t   )  ]                                      ( 0 <   1 ). 
 
 2 ln   as given in equation (8.32) is a measure of the width of the spectrum or the distribution of 
relaxation times and can be directly related to the KWW  parameter for the above equation (  1 as 
 2 ln    0,  0 as  2 ln     ) [41]  Based on configurational entropy arguments and free 
volume concepts, Moynihan and Schroeder obtained expressions for  2 ln    [41]  In this work we 
rederive these equations starting with the more basic Adam-Gibbs premise. 
Assuming that the mean relaxation time  and the relaxation time  i of an arbitrary local rearranging 
region are given by Mohanty’s and Adam-Gibbs’ expressions [42-44]: 
 
ln   =   ln  A +  z *  kbT                                                   (8.30) 
ln  i =   ln  A +  z i*  kbT                                                  (8.31) 
 
Here, A is the average rate for the state ( E', V' ) to go to the state ( E, V ) at the same pressure (P) and 
temperature (T) where E (or E' ) and V (or V' ) are the total energy and the volume for the 
rearrangeable subsystem, respectively,  is largely the potential energy hindering the cooperative 
rearrangement per molecule, z i* is the minimum number of molecules needed for a cooperative 
rearrangement in a local region, and z * is the average value of z i*.  At a given P and T it follows that 
 
 2 ln        ( ln  i    ln   )2    =  (   kbT ) 2  2 z *                (8.32) 
 
where  2 z *    ( ln z i*  ln z * )2 .  We are interested here in the temperature dependence of ln  
and  2 ln   at constant P. Consequently z * = z *(T). 
At constant P and T the liquidlike fluctuations in an equilibrium melt are the fluctuations in the specific 
configurational entropy sc and in the “free” or relaxational part of the specific volume vF. At constant P 
in the equilibrium liquid: 
 
sc = sc (T),  vF = vF (T). 
 
Consequently, depending on whether we want to focus on the configurational entropy or on the free 
volume, we may write 
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z * = z * (sc (T))                                                                   (8.33a) 
or 
z *  = z * (vF (T))                                                                 (8.33b) 
 
It follows from Eq. (8.32) that at constant P: 
 
2 ln  = (kBT )2 (z*/sc )p

2 2sc  = (/kBT )2 (z*/T )p
2(T/sc )p

2  2sc  
(8.34a) 

or 
2 ln  = (kBT)2 (z*/vF)p

2 2vF  = (kBT )2 (z*/T )p
2(T/vF)p

2 2vF  
(8.34b) 

 
The mean square fluctuation in the specific configurational entropy is [45, 46]  
 
 2sc  = kBvcp  VAG ,                                                           (8.35) 
 
where v is the specific volume, cp the difference between the equilibrium liquid and glass specific 
heats, and VAG the correlation volume which are based on the Adam-Gibbs theory [41]  ( sc /T )p is 
given by 
 
( sc / T )p = cp / T.                                                               (8.36) 
 
 2 vF  is given by the expression [41,46,47] 
 
 2 vF  = kBTv2 / VFV,                                                  (8.37) 
 
where  is the relaxational part of the isothermal compressibility and VFV the correlation volume 
which are based on the Cohen-Grest free volume theory [48]. ( vF / T )p is given by 
 
( vF / T )p = v,                                                    (8.38) 
 
where  is the relaxational part of the thermal expansion coefficient.  To obtain the (z*/T)p term in 
Eq. (8.34) let us move directly to a Tool-Narayanaswamy equation interpretation [39, 40, 49] of Eq. 
(8.30).  The equilibrium liquid temperature dependence of  at a given temperature is given by: 
 
( d ln   dT )eq     ( H*  RT2 ) =  ( z*  kBT2 ) + (   kBT )( z*  T )P 
 
while the glasslike temperature dependence of  ( for constant z* ) is given by: 
 
( d ln   dT )z*   ( x H*  RT2 ) =  ( z*  kBT2 ). 
 
Here H* is an Arrhenius activation energy and x (0 x 1) a non-linearity parameter which partitions 
the relative dependences of  on temperature and structure.  Taking the difference between these two 
equations we get 
 
(z* / T )p =   ( kBT   ) [ (1 x ) H*  RT2 ].                               (8.39) 
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Inserting Eqs. (8.35) to (8.39) into Eq. (8.34) we finally obtain  
 
 2 ln  = [ (1x) H*  RT ]2 [ kBv  cpVAG ]                                       (8.40a) 
or 
 2 ln  = [ (1x) H*  RT2 ]2 [ kBT   (  )2VFV ]                    (8.40b) 
 
The top expression on the right is of course identical to eq. (15) derived from the Adam-Gibbs theory 
by Moynihan and Schroeder [41].  The bottom expression on the right is identical to Eq. (20) derived 
from the free volume theory in their paper, except for the appearance of the (1x) factor in the present 
expression.  The reason for this latter discrepancy is that Moynihan and Schroeder used the “classical” 
free volume expression in which the temperature dependence of ln  is contained entirely in the 
temperature dependence of vF

1 = (v  v)
1.  In the present free volume treatment ln  depends 

explicitly on 1 T and in addition on z*, which is in turn presumed to depend on vF (cf. Eqs. (8.30) and 
(8.33)). The values of VAG

1/3 and VFV
1/3 from Eqs. (8.40a) and (8.40b) above are in much better 

agreement than was found for the corresponding values in the paper by Moynihan and Schroeder.  
From the Eqs. (8.40a) and (8.40b) we have  
 
VFV

1/3  VAG
1/3 = [ cp   T v ()2 ] 13 =  1/3                                (8.41) 

 
where  is the Prigogine-Defay ratio [50, 51]:  = cp   Tv ()2. Since values of the Prigogine-Defay 
ratio  near Tg are typically in the range 2 to 5, VFV

1/3  VAG
1/3 will lie in the range roughly 1.3 to 1.7. 

Intrinsic light scattering from liquids and glasses is due to density and concentration fluctuations 
[52,53]  Concentration fluctuations freeze at temperatures well above the glass transition temperature, 
Tg, so that time dependent scattering in the transition region is proportional to the time dependent 
mean square fluctuations, 2  or  2 v , in the density, , or specific volume, v, due to local liquid-
like structural variations [52,53].  Hence, the Rayleigh line intensity, IR, or the Landau-Placzek ratio, RLP, 
will be proportional to the distribution of relaxation times, < 2 ln  . 
Specific measurements of Rayleigh-Brillouin spectra as a function of temperature from glasses show a 
hysteresis curve in the scattering intensity in the vicinity of the glass transition region depending 
whether the measurement is done from low to high temperature or in the inverse sense. This observed 
hysteresis in the scattering and predicted from the above theory in the distribution of relaxation times 
is strong evidence for the formation of homogeneous regions representative of intermediate order in 
glasses. The magnetic behavior of the rare earth glasses should now be governed from particle like 
phenomena similar to the quantum dots. 
 
The Boson Peak and the Density of Vibrational States and Intermediate Range Order (IRO) 
      
Raman scattering in disordered systems differs from the scattering in crystals in that it is related to 
spectrum of the vibrations in the material.  Experimentally Shuker and Gammon [54,55] showed that 
the entire Raman spectra of glass consisted of broadened intensity lines (not the sharp spectral lines, as 
seen in crystals). The crystal state follows precise selection rules due to k-conservation resulting in 
relatively narrow Raman lines.  In the glass counterpart the selection rules are broken because the 
disorder in a glass allows momentum conservation to be of no consequence and the Raman lines are 
extremely broad.  This is also valid for the low frequency "Boson peak" - but remember its crystal 
counterpart does not exist.  According to Shuker and Gammon [54,55], the intensity as a function of 
frequency for Raman scattering is given by equation (8.41) in the previous section and we will rewrite 
this equation again.  It was shown that the intensity of the Raman spectra in disordered solids is 
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proportional to the density of vibrational states g() multiplied by light vibration coupling coefficient 
(Pockels' coefficient) C(): 
 
I() = g() C() [1+n()] /  ;                                                     (8.42) 
 
here [1+n()] is the Bose-Einstein occupation number for the Stokes component.  So it is possible to 
find g() from Raman spectra, if one knows the frequency dependence of C().  In the first discussion 
[54,55] it was supposed that C() = constant, but this dependence does not lead to the correct g().  In 
the extreme case of complete randomness of the atomic couplings or the atomic amplitudes in the 
vibrational modes C() would be independent of frequency.[56].  Comparison of the Raman spectra 
with inelastic neutron scattering data (which yield in the incoherent approximation directly g()) have 
shown [57-60] that in the the Boson peak region, g() exhibits a broad maximum in a number of 
glasses, while C() has no maximum and varies nearly linearly.  As discussed by numerous other 
authors [61-67] the Boson peak is due to an increase of the vibrational density (phonon density) of 
states over the Debye value (g() = 32 /D

3, D = Debye cutoff frequency), and this origin is now 
generally accepted. 
The Boson peak is caused from vibrational excitations made up of acoustic phonons most likely shear 
or transverse phonons which scatter strongly from elastic inhomogeneities in the structure due to the 
topological disorder in glasses.  The scattering leads to a drastic decrease of the mean free path of 
vibrations L(), and, in particular, can increase the vibrational density of states in a certain frequency 
range.  These excess phonon states may now be considered to be localized by the strong scattering.  
Hence, phonon localization may be viewed in terms of the Ioffe-Regel rule [68,69].  The Ioffe-Regel 
criteria are given as: 
 
k( IR) L( IR)  1,                                                         (8.43) 
 
with k( IR)-the magnitude of wave vector, L(IR)-the mean free phonon path at the Ioffe-Regel 
frequency  IR.  (Note: The phonon localization here is analogous to the Anderson localization of 
electrons.)  The Ioffe-Regel rule allows us to calculate a correlation length in terms of  BP, the Boson 
peak frequency, and the sound velocity, vs.  Expressing this rule thusly, 
 
Lc  vs / BP                                                                (8.44) 
 
The excess density of phonon states can be attributed to the consequence of strong scattering [70].  
Now, the position of the Boson peak maximum leads to correlation length that is an indication of the 
intermediate range order (IRO) in glasses.  These correlation lengths or IRO's will be on the order of 
several nanometers in size.  
Note that the intermediate range order has also been interpreted as a nano-scale inhomogeneity with 
respect to the anomalous Rayleigh scattering (hysteresis effect in the Landau-Placzek ratio) and here 
we have postulated that the region is homogeneous (domains) up to nanometer size extent.  A clear 
difference is shown from the accepted short range order concept, which has governed the behavior of 
amorphous solids for so long.  The observations done in this work, that a typical correlation length or 
IRO for a glass extends over several nanometers in length certainly gives new insights to understand 
basic properties of glasses. 
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Summary Comments on Boson Peaks and Nanoscale Inhomogeneities 
 
Both of the above sections (8.30, 8.31) predict results for glasses which may have drastic implications 
with respect to the observed behavior for Faraday rotation in the rare earth containing glasses. The 
quantum dots of the II-VI semiconductors in the glass matrix exhibit a nonlinear behavior with the 
formation of kinks at certain values of the applied field which seems to be particle size dependent. The 
rare earth containing glasses show a similar result from their Faraday rotation behavior and with 
external field values lower than the quantum dots. It may very well also be a particle size dependent 
phenomenon. Which asks the question why is there particle like structure in a glass similar to the 
quantum dot structure responsible for its magnetic properties? The intermediate range order as 
obtained from the Boson peak measurement for glasses by Raman scattering or the Nanoscale 
inhomogeneities obtained from Rayleigh-Brillouin scattering results, with both measurements 
complementing each other allow us to draw a conclusion that particle like regions exist in the glass, 
with these regions have typical diameters also on the order of the quantum dot diameters. The rare 
earth oxides which persist interstitially in the glass matrix may well be confined to these regions of 
nanoscale inhomogeneities and the particle like behavior is explained by such a mechanism. 
Light scattering from glasses in the glass transition region exhibits an anomalous Rayleigh scattering.  
We observe a maximum in the scattering intensity versus temperature during heating.  This behavior is 
consistent with the presence of nanometer-scale inhomogeneities (density fluctuations) which relax at 
differing rates.  In all cases, a hysteresis effect is seen in the light scattering data taken during heating 
and cooling each sample from room temperature through the glass transition region.  We suggest that 
this could be the source of non-exponential structural relaxation kinetics. Here we do the necessary 
calculations to show the relations of the correlation volume to the distribution of the relaxation times. 
From these approaches, we calculate the correlation volume of these nanoscale inhomogeneities and 
find a typical size (~Vl/3) of about 2-3nm.  This is consistent with independent observations done by 
Raman scattering where we observed the low energy “Boson Peak”.  For the low frequency Raman 
spectra, all glasses show a broad feature around 0.6-3.0 THz, the so-called Boson peak.  This Boson 
peak is associated with the existence of intermediate range order in the glass.  The Boson peak is due 
to an increase in the vibrational density of states, over the Debye value, caused by localized excitations 
(phonon localization).  The degree and range of disorder in the glasses is obtained in a quantitative 
sense from the behavior of the Boson peaks with temperature and compared to Rayleigh-Brillouin 
scattering data for the same glasses.  
Hence, we wish to imply that the complementary concepts of Boson peaks from Raman scattering and 
the nanoscale inhomogeneities from Rayleigh scattering lead to the same concepts of intermediate 
range order in glasses. This intermediate range order manifests itself in a homogeneous region of a 
typical extend from 2-4 nm in size surrounded by a disordered extended surface. This concept applied 
to the rare earth containing glass samples allows one to postulate that the rare earth oxides are 
enclosed in this homogeneous region and their magnetic behavior should now be governed by a 
particle like process similar to the quantum dot samples. 
 
 

Experimental Techniques 
 
The quantum dot samples were prepared, using Schott-RG695 glass, which was bleached (struck) first, 
at 1100ºC and cooled to room temperature.  The “striking” removes any nano-crystallites from the 
glass.  Then these glasses are heat treated for varying lengths of time to obtain different sizes for the 
quantum dots. With sufficient time larger diameter dots grow at the expense of smaller dots.  This 
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occurs as smaller dots dissolve back into the glass matrix and larger dots grow at their expense.   This 
base glass was a borosilicate glass with the primary constituents being SiO2, B2O3 and minor 
constituents of Na2O, CaO, K2O and ZnO, all in the approximate ratios of 75:13.6:6.4:4.5:0.4, 
respectively.  This base glass was doped with Cd and S, Se.  Samples heat treated for longer periods of 
time had a higher degree of homogeneity than did the samples treated at higher temperatures for 
shorter periods of time, as determined from their absorption spectra peaks.  More homogeneous CdSe 
samples were of greater sphericity, and varied in size approximately 7%, as opposed to u 30% for the 
less homogeneous samples [35]. Sizes were measured by a technique involving low frequency Raman 
scattering and the analysis of the absorption spectra for various samples [36].  
Figure 2 shows the data used to calculate the average diameters of the CdSe quantum dots. 
A variety of samples were studied, in which glasses containing rare earth oxides were evaluated for 
Faraday rotation as a function of an applied external magnetic field. These samples contained 33% 
rare-earth oxides in a sodium silicate base glass. These samples were prepared employing standard 
small batch glass forming techniques. Optically these glasses all exhibited low Rayleigh scattering as 
determined from Landau-Placzek ratio measurements [J. Schroeder-unpublished data]. 
 

 
 
FIGURE 8.1 
A schematic of the experimental apparatus employed in the Faraday rotation studies 
 
For the Magneto-optic studies the samples were placed in the gap of a “Magnion” electromagnet (NMR 
magnet with high field homogeneity, 1 part in 105) with field self-regulation and a maximum field up to 
2.57 Tesla. A schematic of the experimental apparatus is given in Figure 1. Note the Faraday geometry, 
the polarized light propagating vector and the magnetic field direction being parallel or antiparallel, is 
employed in the measurements. The light source consisted of either a helium-neon laser, at 633nm (50 
mw) or mostly an Argon-ion laser at 488nm (500 mw) passed through the long axis of the samples 
(Faraday geometry) with the aid of a pair of mirrors placed at 45º from the angle of the incident beam 
to allow for the laser to be parallel with the applied magnetic field.  The laser beam was collimated 
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with two pinholes of the same diameter to assure that the light beam was always contained within the 
thinnest sample.   The entire system was calibrated by using a standard sample of Corning 8463 glass 
and SiO2 glass (homosil).  A glan-laser prism was placed before and after the sample as polarizer and 
analyzer, respectively. The beam intensity was read with a photo-detector and electrometer.  The 
analyzer was set to 45º from the null point.  
 

 
 
FIGURE 8.2 
A typical data run of Optical Absorption Data versus excitation energy for various quantum dot composites. Here 
we show spectra for CdSe quantum dots. The method is shown by which the particle size of the quantum dots 
were determined. It also shows a red shift in wavelength as the particle size of the quantum dots become larger or 
the samples treated for 1, 2, 4, and 8 hours have progressively smaller energies at the absorption peaks 
 
Figure 3 shows a Faraday rotation measurement versus applied magnetic field for the base glass for the 
oxide containing glasses. It is clearly seen that only one slope exists up to the highest external field 
value for this Sodium-Silicate glass sample. 
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FIGURE 8.3 
Faraday rotation measurements for the standard sodium-silicate glass to which the rare earth oxides were later 
added. Note the single slope and no evidence of any “kink” development is seen throughout the external magnetic 
field range 
 
 

Results 
      
A set of Faraday rotation measurements were done on samples consisting of CdS and CdSe quantum 
dots contained in a borosilicate-glass matrix.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8.4 
Optical Rotation of CdSe quantum dots with less homogeneity and greater size dispersion (~30%). (Estimated error 
from averaging a number of data runs is ±50 degrees/Tesla-Meter) 
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FIGURE 8.5 
Faraday rotation for CdSe quantum dots in a glass matrix with greater particle size homogeneity (only ~ % 
variations). This size dispersion has an effect on the magnitude of the slope of the Faraday rotation with respect to 
the magnetic field 
 
See Figures 4, 5 and 6 where a striking effect is obvious that the Faraday optical rotation is not linear as 
a function of the applied field for all three figures.  The onset of this inflection or “kink” in every case 
occurs at different applied field values and the sample with the smallest quantum dot size has this 
inflection at the lowest value of the external applied magnetic field.  Note in the figures that the 
samples with the shortest heat treatment times will be those of the smallest quantum dot diameter.   
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FIGURE 8.6 
Optical rotation of CdS quantum dots in glass for high homogeneity samples. Error bars the same magnitude as in 
figures 4 and 5. Measurements for a NBS-710 glass is also shown as the lowest line in the graph 
 
In Figure 6, measurements of Faraday rotation versus applied field are  also shown for a NBS-710 glass 
sample and the “kink” is absent in this glass up to the highest field value attained and its Verdet 
constant is considerably lower than any of the CdS or CdSe containing glasses.  Another effect to be 
noted upon comparing the results from Figure 4 and 5,  both are CdSe quantum dots, but CdSe 
containing samples in Figure 4 have a greater size variation (~ 30%) compared to CdSe samples in 
Figure 5 which are of greater homogeneity (~ 7%) and have greater sphericity.  The interesting effect 
here also shows that homogeneity of the particle size and sphericity (steric effects) affect the 
magnitude of the Faraday rotation.  Comparing the magnitude of the Faraday rotation, for the smallest 
quantum dot size of the samples given in Figure 4 and Figure 5, there is about a seven-fold increase for 
the smallest quantum dot diameter with the higher homogeneity sample having the greater Faraday 
rotation.  The samples heat treated for times longer than eight hours demonstrated little if any “kinks”.  
Hence, optical rotation of homogeneous CdSe QDs demonstrates increased Verdet constants with 
increasing confinement (decreased dot size).   
Also where inflection points are seen for the samples, there is a linear relationship between the QD 
radius and the field H at which each “kink” occurs and Figure 7 demonstrates this for the CdSe sample. 
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FIGURE 8.7 
Field intensity at the point of inflection versus quantum dot size for CdSe samples 
 
That the quantum dot size versus points of field inflection maintains a linear relationship may at first 
point to a relationship between the observed “kinks’ and the extreme confinement energies. However 
the electronic levels in QD’s increase with an inverse quadratic behavior with dot size, which itself is 
related to the confinement energies; therefore one would expect there to be a quadratic and not a 
linear relationship between the external applied magnetic field at the transition and the dot size if the 
kinks were simply dependent upon the confinement energies. 
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FIGURE 8.8 
This plot shows all the rare earth containing samples used in this experiment.  The value for the slope of each line 
is the Verdet Constant for that sample.  Positive slopes are diamagnetic and negative slopes are paramagnetic.  
Note the larger Faraday rotators: containing TbO, DyO, NdO, HoO 
 

 
 
FIGURE 8.9 
Low magnitude rare earth rotators-no kinks observed 
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Figures 8 and 9 show a compilation the results of Faraday rotation measurements for all of the rare-
earth containing glasses. Terbium-oxide, Dysprosium oxide and Holmium oxide containing glasses 
demonstrate points of inflection (kinks) at higher value of the applied field. This certainly is an 
unexpected result. Note that these particular rare-earth containing samples (Tb, Dy and Ho) with 
“kinks” had the highest Verdet constants in the linear range. Enlarged versions with the data points for 
rare earth containing glasses withTbO, YbO and HoO rare earth oxides are shown in Figures 10, 11, and 
12 ; respectively.  
 
 

 
 
FIGURE 8.10 
A Typical Data Run of the Terbium-oxide-containing glass sample. A visible kink or inflection point is present at 
~1.21T. V1 and V2 are the changes of the Verdet constants 
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FIGURE 8.11 
YbO-containing glass Faraday rotator. An inflection point is seen at 1.126 Tesla 
 

 
FIGURE 8.12 
HoO containing glass-Faraday rotation versus external magnetic field. Inflection point is clearly evident 

 

 



Nanomagnetism  213 

A single crystal sample of NaCl was also examined and no evidence for an inflection point was seen.  
This result is given at the bottom of Figure 13.   
 

 
 
FIGURE 8.13 
This figure compares the Verdet Constant of a CdSe nanocrystal   glass with the results of multiple runs of the TbO 
doped glass and the single crystal NaCl sample.  It is clear that the TbO sample displays an instantaneous increase 
in Verdet constant after a certain magnetic field intensity value just like the quantum dots of CdSe.  This may 
suggest 3-D electron confinement and intermediate range order domains in the silicate base glass. Note there is no 
slope change in Verdet Constant for the single crystal NaCl 
 
This figure also shows a comparison of CdSe quantum dots, TbO glass and single crystal NaCl, with 
respect to the Faraday rotation measurements.  Figure 8 shows a compilation of the rare-earth 
containing samples and their base glass of Na2O∙SiO2, and note that most of the glasses are 
paramagnetic with the base glass and Yb being diamagnetic. Figure 9 exhibits the remaining low 
magnitude rare earth rotators.  
In the following section the observed effects will be discussed and possible mechanisms will be 
proposed to try to explain the observed results, especially the inflection points (kinks) in quantum dot 
containing glasses and some of the rare-earth glasses. 
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Discussions 
        
Various mechanisms are to be put forth, evaluated and discussed as to the feasibility of using these 
processes to explain the observed effects as given in the results.  Let us consider Landau levels, 
resonance effects, shape (steric) and piezo-electric effects, electron-spin correlation and the 
intermediate range order of the glass matrix itself and try to interpret how each of these mechanisms 
may or may not affect the Faraday rotation behavior. 
The size of the Verdet constants seen for the samples used in this study is significantly   larger than a 
typical standard glass SiO2 and significantly greater than for the base glass.   It   is significantly higher for 
the more homogeneous CdSe samples than for those samples less homogeneous in size distribution.  
Additionally, the more homogeneous samples were grown at lower temperatures (close to the glass 
transition temperature) for longer periods; not only allowing greater size homogeneity but also greater 
sphericity.  The presence of less than spherical edges causes charge build-up at the vertices of the 
crystal.  This, in turn, alters physical parameters such as exciton correlation [71].  The lack of sphericity 
in quantum dots may cause the electron and hole to occupy different positions in the quantum dot, 
thus making exciton formation difficult.  Such charge polarization would undoubtedly alter electron and 
hole motion in general and could clearly alter the electronic properties of the quantum dots in 
question.  The magnitude of the Faraday rotation of homogeneous versus inhomogeneous CdSe 
quantum dots in a glass matrix is greater by a factor of almost 7 as seen from Fig.4 and 5.  The 
increased sphericity of the more homogeneous dots may be a factor in this increase. 
Landau levels are a consequence of an externally applied magnetic field to a material with free 
electrons.[38]  The application of an harmonic oscillator model will characterize their energies and 
electronic motion. The energies of Landau levels are (n + ½) eH/2ħc with e, ħ, c, H being the elementary 
charge of the electron, Planck’s constant, the speed of light and the magnetic field, respectively.[72]  
For an unconfined electron in a Landau level, the ground state energy is ~1.7 meV. Thus, the 
measurement of phenomena involving Landau levels generally involves very low temperature 
processes.  Let us consider Landau levels and magnetic flux.  The electron’s wave function surrounds a 
closed path and the magnetic flux enclosed within such a path is quantized in integer multiples of the 
flux quantum, Φ = hc/e.  The degeneracy, g, is the total magnetic flux measured in units of the flux 
quantum, g = Φ/ Φ0.  The total degeneracy for a two-dimensional Landau level in a three-dimensional 
quantum dot is     g = πr2 (Φ/ Φ0).  However, the magnetic flux quantum is ≈2.10-15 Wb.  For a 1T field, 
the expected magnetic flux within a 1 nm quantum dot ≈3.10-18 Wb.  Classically, the external magnetic 
field would have to be ~100T to reach a degeneracy of one and the first Landau level. 
Our measurements were made at room temperature, with kT ≈ 28.5 meV.  Classically, the first Landau 
level has energy of 1.7 meV, well below the thermal threshold.  Using a semiclassical approach and 
setting mω2r2/2 = hω(n + ½), for n = 0, we obtain r ≈ 25 nm.  From the WKB approximation [73,74] the 
energies of a confined harmonic oscillator with a confinement ratio of 0.5 the classic harmonic 
oscillator potential increases the ground state energy by a factor of ~4 or it behaves approximately as 
1/r2.  By extrapolation a confinement of 0.10, the size of the largest quantum dots studied would give a 
ground state energy increased by a factor of ~100, resulting in a ground state Landau level energy of 
~170 meV, well above the thermal background.  Given the calculated high magnetic field intensities 
(≤300T) necessary for Landau levels to exist in small quantum dots, it is considered unlikely that they 
play a role in the interactions seen [75]. Hence, it is likely that the issue of Landau levels being 
associated with the kinks in the Faraday rotation curves will have to be set aside. 
In the discussion let us next consider resonance effects. See preliminary concepts in the theoretical 
background section abve. The magnitude of the Verdet constants of the quantum dot containing 
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glasses is significantly greater than its base glass or the standard SiO2 glass.  The Verdet constants are 
also significantly higher for more homogeneous samples than those samples less in size distribution.  
For CdSe quantum dots it is greater by about a factor of seven.  Considering that the smallest of the 
more homogeneous CdSe quantum dots have band gap energy of 2.54 eV.  Whereas the exciting light 
of the argon-ion laser (488 nm) has energy of 2.56 eV.  Thus the energy of the exciting light is 
essentially on the band edge for this quantum dot.  It is well known that the Verdet constant equations 
predict resonance effects as seen from the theory background section. 
In the samples of quantum dot containing glasses with size heterogeneity of significant variation, the 
polarization vectors for light exiting the different quantum dots may exist not as a plane polarized 
beam but as an ensemble of waves with the phase relationship no longer unique.  This in fact may lead 
to nonlinear effects as predicted by the theory of Yu band Osborn [36].  Thus the optical rotation would 
be significantly less for samples with large heterogeneity than very homogeneous dot distribution in 
samples.  In the later case the majority of the exiting waves had essentially the polarization or the same 
phase relationship.  This may explain the difference in the Faraday rotation as seen in Figures 4 and 5 
[75]. 
The energy of the incident laser is approximately 0.02 eV from the edge of the bandgap of the smallest 
quantum dot.  This fact, based on the resonance effect would account for the higher Verdet constants 
of the quantum dot containing glasses.  It does not, however, explain the kinks since the edge of the 
band gaps of the larger quantum dots deviate by more than 0.5 eV from the energy of the incident 
laser light. 
Next let us consider shape (steric) and piezoelectric effects on the Faraday rotation.  Heat treatment at 
temperatures nearer to the glass transition temperature for longer periods of times tends to produce 
more spherical quantum dots with higher homogeneity of size.  Computer modeling of quantum dots 
has demonstrated significant charge build-up at sharp vertices of quantum dots [71].  More spherical 
dots have much less charge build up.  This charge build-up tends to isolate electrons and holes, causing 
them to become uncorrelated.  It also causes confinement of electrons to the central position of the 
quantum dot.  This in turn alters physical parameters such as the exciton correlation [71].   
Kinks in the Faraday rotation from rare-earth containing glass samples have also been measured.  
These kinks have an on-set magnetic field value that is lower than for the quantum dot case.  This 
raises the possibility of potential bounded regions of intermediate range order of 2-10 nm in size, and 
such regions are established from Raman measurements of Boson peaks [38, 75].  These regions or 
domains present a unifying factor between kinks in the quantum dots and the kinks seen in the rare-
earth doped glasses. These potential bounded regions in the glasses may serve as regions of electron 
and phonon confinement [76], bringing into play similar physical factors.  It is these physical factors 
which may be responsible for the kinks seen in both materials.  It may be that quantum dots in colloidal 
form will not show nonlinearities, and only the intermediate range order (IRO) of the glass makes the 
kinks a possibility.  When Faraday rotation measurements were done on a single crystal NaCl sample, 
no kinks were detected.  Its Verdet constant was linear throughout the magnetic field range.  
The presence of electron-spin correlation may be involved in the kinks seen in the Faraday rotation 
curves in both sets of materials. Quantum dots present potential bounded regions, and rare-earth 
containing glasses may as well.  Electrons confined in these regions may evidence correlations of their 
spins which would be expected to affect Faraday rotation. As given by Holstein and Primakoff [77,78 ] 
regions of spin correlation would substantially increase the energy of interaction between electron 
spins, thus tending to keep the electron in a spin aligned state. Spin exchange is a process in which the 
energies of two electrons are lowered by a quantum mechanical interaction, in which their spins are 
“exchanged”, or in a sense linked.  The energy for spin exchange in a ferromagnetic material are ~160 
meV per electron pair.  We may link at the electrons in quantum dots, elevated from the valence to the 
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conduction bands, as being free electrons. The treatment of spin exchange interactions for such free 
electrons is a special case and the interaction energy takes the form   Ex/N = - ¾ e2 (3ρ/π ) 1/3  . The 
derivation of this equation will be treated later in this section. Now if the density of electrons is taken 
as the density in a quantum dot of radius 1 nm, and if we multiply the right side of the above equation 
by 1/ε, the dielectric constant for CdS, CdSe it is approximately 9.35-10.2, we obtain for a three 
electron quantum dot, ~200 mev per electron.  This energy compares favorably with the ferromagnetic 
spin exchange energy.  Thus the factor ρ will be lower for larger quantum dots and the exchange 
energy per electron will therefore be lower.  If this is the  case, then it is further possible that a larger 
externally applied magnetic field would be necessary to provide the impetus to align the spins in larger 
quantum dots; thus causing the linear relationship between quantum dot size and the magnetic field 
intensity at which the kinks are seen, as is noted experimentally. 
We are therefore presented with a phenomenon in which kinks in the Faraday rotation curve are noted 
for semiconductor nano-crystals in glass matrices, as well as for some rare earth containing glasses. The 
base glass does not demonstrate kinks in its Faraday rotation curve, nor does the NaCl crystal. This 
therefore begs the question as to what possible similarities might exist between samples of 
semiconductor quantum dots embedded in glass matrices and rare earth-containing glasses. A possible 
explanation is the structure of the glasses themselves. Glasses exist on a continuum between the 
crystalline and the liquid or gaseous state. Here, [38,41,75,76], it is noted that glasses represent a 
physical state in which, in effect, a glassy liquid is cooled very rapidly (quenched) than it may for a  
crystal. The net result is that it becomes an amorphous solid, with regions of nanoscale 
inhomogeneities; which then has some characteristics of crystalline materials.  The glass structure has 
bonds, similar to the crystal. The spatial symmetry of the crystal is lost, however, and the periodicity is 
compromised as well, as a consequence, however, correlation between atoms exists. For gaseous 
materials, there is no correlation between the atoms. Liquids occupy a position between glasses and 
gases. Atoms/molecules are in physical contact, but they are not rigidly bound to each other, and there 
is no clear long-term order or correlation. There is, however, physical contact and collisional motion. 
 
Experimental evidence exists which supports the contention that there exists intermediate-range order 
in glasses [38,41,75,76,58,80-82,83]. There is evidence stemming from Raman spectroscopy in which 
low-lying Raman vibrational peaks termed “Boson peaks”, are associated with what has been termed, 
“intermediate range order” [38,41,75,76] in glasses. The intermediate range order, of the order of 2 – 6 
nm appears to be independent of glass composition, and is thus a robust phenomenon. More 
specifically, the intermediate range order may be thought of as a phenomenon in which electrons and 
phonons are localized within glass matrices by the amorphous nature of the glass itself (intermediate-
range order, manifesting itself in 2 – 6 nm. domains). The glass matrix does have order and there may 
be areas of structure similar to that of a crystal, surrounded by regions which are much less ordered. It 
is these surrounding areas of disorder which may provide a potential barrier, effectively confining 
electrons and phonons into regions. As stated in Reference [64], the wavefunction effectively occupies 
an area near a center of several atoms. Away from this area, the probability amplitude decays 
exponentially. This decay goes as exp(-αr), the term, α being the “inverse localization length”. The 
“confinement” of the electrons and phonons in these regions effectively occurs as a consequence of a 
“disorder induced potential energy of sufficient strength” [82]. And, in contrast to the quantum dot, 
where there is assumed to be a fairly consistent potential barrier at the order of the nanocrystallite, 
there is a more inhomogeneous potential barrier in the confined regions in glasses. There is a 
distribution of barrier heights, denoted by an averaging parameter, W, giving the width of the 
distribution. Thus, we may postulate the existence of localized regions of order in glasses (nanoscale 
inhomogeneities), surrounded by disordered regions, effectively producing regions acting as de facto 
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quantum dots. These regions would function as quantum dots, in that there would be localization of 
electrons and phonons in regions surrounded by a potential barrier of sufficient magnitude to produce 
localization. From a theoretical standpoint, these regions would likely be difficult to model, as by their 
very definition, they would be amorphous. They would also be non-spherical, and as such, would be 
subject to significant piezoelectric effects, with the attendant separation of electrons and holes this 
produces.  In the glasses doped with rare earth ions, they would also contain ions with multiple 
unpaired f-orbital electrons. Thus, we may view these glasses as containing de facto quantum dots with 
rare earth ions. Henceforth, these regions will be termed “potential-bounded regions” (PBRs) for 
brevity and to prevent confusion. Viewed as such, it is interesting that these glasses have Faraday 
rotation curves which have kinks at field intensities significantly lower than for the semiconductor 
quantum dot samples. Note that for the smallest of the homogeneous CdSe quantum dot samples the 
first inflection was at 1.85T, whereas for the glasses containing TbO it was ~1.22 T, with similar field 
intensities of inflection for YbO and HoO containing glasses. One is reminded again, that in the single 
crystal sample of NaCl, no inflection was seen anywhere and no deviation from linearity could be 
observed. 
In attempting to determine the origin of the kinks noted, the factors common to the different samples 
evidencing them must be considered. The semiconductor quantum dots represent a fairly well-
controlled and fairly homogeneous experimental substrate, but the rare earth containing glasses do 
not. They are amorphous and inhomogeneous beyond a certain diameter. The quantum dots may have 
fairly consistent electronic properties, but those of the rare earth containing glasses may be less 
consistent. They do not have consistently and homogeneous potential barriers either. One possible 
unifying explanation for the phenomenon noted to occur in the above samples involves electron spins 
in a magnetic field. 
The incident laser excites electrons from the valence to the conduction band, or from the highest 
occupied molecular orbital to the lowest unoccupied molecular orbital (if one uses the HOMO-LUMO 
terminology). Similarly, for the rare earth containing glasses, there are likely electrons which are 
excited by the incident laser radiation. We may then further hypothesize quantum dots or quantum 
dot-like regions (PBRs) have a small, but finite number of excited electrons, which behave as free 
electrons. The existence of such electrons, each with spins of ±½ may give rise to combinations of spin 
with magnetic moments which are of interest. The following discussion follows from [77,78] by 
Holstein and Primakoff. A system with three interacting electrons will be subject to Coulombic and 
magnetic interactions. Evaluating first, the magnetic interactions between the magnetic moments of 
the electrons themselves, we have, for the magnetic correlation energy, U, between two electrons, 
 
 
 
     U = [m1*m2 – 3(m1*n)(m2*n)]                                  (8.45) 
 
 
Then, to an approximation, 
 
Udipole-dipole         (m1m2)                                                    (8.46) 
 
And, for m1, m2 ~ gµB ~ eh/m and r ~ 2 Angstroms, and µb as the Bohr magneton, we have, 
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U ~  ~ ~ 10-4 eV                                     (8.47) 
 
                                  
 
Using kT, this represents a temperature of approximately 1K. Thus, such interactions could only be 
assessed in experiments using pumped liquid helium, and are too small to be entertained as a cause of 
the phenomena observed.  
Next, we will assess the energy for one such electron magnetic moment in an externally applied 
magnetic field. Here, we note the energy will be, 
 

5.8x10-5 eVT-1                   (8.48)     ~              
 
which for a 1 Tesla field is once again,  ~ 10-4 eV. 
Now, a group of magnetic moments are treated differently from single magnetic moments, and the 
average magnetic moment, < m >, is given by, 
     
 
 

              
                      

 (8.49) 
                 

 
 
 
 
 
so that the energy,                                                                            (8.50) 
 
 
This, calculated, gives energy of approximately the same magnitude as the above equation and is thus 
too low to exceed the thermal background at room temperature. 
Coulombic interactions play a part in the interaction of electron spins as well, and these interactions 
affect the total energies of a system with multiple interacting electrons. In our discussion of these 
effects, we will first look at Hunds rules. These rules are a consequence of a physical system’s tendency 
to reduce its potential energy. In the first of these rules, the Coulombic interaction is minimized by the 
spatial part of the wave function for the two electrons being anti-symmetric. Here the node in the 
spatial part of the wave function keeps the electrons apart. In the second of these rules, the angular 
momentum quantum number, L, is maximized. Maximizing the angular momentum quantum number 
has the same effect as antisymmetrizing the spatial portion of the wavefunction. Namely, this 
minimizes the coulombic interaction. Maximizing the angular momentum, L, keeps the electrons 
spatially distant from each other. If we now recall,         
 
 
 



Nanomagnetism  219 

                                              
   
                                                                               (8.51)                                       
 
 
then we can assess the energy for a group of correlated magnetic moments. Such correlated magnetic 
moments will be expected to produce an average total magnetic moment significantly greater than 
isolated moments. Then, if we call the range of this correlation to be ξ, then using  
 

 
 
the formula for the volume of a sphere, and a lattice spacing of a, we have, correlated magnetic 
moments. For ξ/a = 4, or four lattice spacing, we have, ~ 2.7. 102 moments correlated. Then, again 
using the above equation for the energy and for a field intensity of approximately 1.2 T, we have ~400K 
as an effective temperature, and for a 2 T field, an effective temperature of ~ 1000K. 
In the above discussion, no mention was made regarding exchange interactions between electrons. The 
exchange interaction between two electrons is dependent upon the concept of the in-distinguishability 
of the two electrons, allowing them to form quantum mechanical states, lowering their combined 
energies. Thus, the interactions become energetically favorable. Then, two s = ½ electrons will have, for 
example, spins, ↑1, ↓2, the subscripts allowing us to distinguish between the two electrons. The 
Heisenberg Exchange Hamiltonian is then used, 
                                                                               

       (8.52) 
 
where J is the exchange splitting between the two electrons. Here  
 
            
 
 
 
      (8.53) 
 
 
 
 
 
Then, the issue at hand is to calculate J, which will give us the strength of the exchange interaction 
between the electrons.  In an attempt to assess the energy of the exchange interaction, we now look at 
the exchange integral [36]. Here, the matrix element for the exchange interaction is given by 

                       (8.54) 
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Here, k, k’ are the wave vectors before and after the spin-exchange occur. V is the potential operator, 
which goes as, e² / (r2-r1), e being the electronic charge. Plane wave electronic states, such as the ones 
which would be involved in the conduction band may be evaluated through 
 
                                     

(8.55) 
 
 
Here, omega is a normalization volume. Given the previous definition for V, and with nk, nk’ being the 
numbers of electrons in the initial and final states we have, 
 

                                                                                                                             (8.56) 
 
 
And, for the exchange energy per electron, we have Equation 5.10 equal to, 
 
                  

(8.57) 
 
 
where we have used dk3, dk’3 as volume elements, thus moving omega from denominator to 
numerator, in order to maintain consistency in the units of length-3. Then, taking nk, nk’ as unity, and 
performing the integration in the Fermi sphere, with the variables of integration being k/kF [79], the 
exchange energy per electron becomes a constant, multiplied by e²/kF. Then we have [79], 
 
                                                                                       

                  (8.58) 
 
 
Then, if the density of electrons is taken as the density in a quantum dot of radius 1 nm.; and, if we 
multiply the right side of Equation 5.13 by 1/ε the dielectric constant, as constant, as is customary (for 
CdS, CdSe, it is approximately 9.35 – 10.2), we have, for a 3 electron quantum dot, we are left with 
approximately 200 meV per electron.  
For ferromagnetic systems, the interaction energy is approximately 160 meV per pair of electrons. This 
compares favorably with our rough calculation for the exchange energies. 
It should be noted that without an exchange interaction, there will be an equal number of spin up and 
down states, without a predilection for either; thus resulting in no net magnetic moment. Once the 
spin exchange integral comes into play, there is an impetus for electrons to align with the same spin 
direction. It is possible, therefore, that in an applied magnetic field, the electrons would have a 
tendency to align in the field. The stronger the field, the greater that tendency. Note that for a 
quantum dot of larger size, that there will be a lower density of electrons if, say, three or five electrons 
on average are in the conduction band. 
Thus, the factor,  ρ  will be lower for larger quantum dots, and the exchange energy per electron will 
therefore be lower. If this is the case, then it is further possible that a larger externally applied 
magnetic field would be necessary to provide the impetus to align the spins in larger quantum dots; 
thus causing the linear relationship between quantum dot size and the magnetic field intensity at 
which the kinks are seen, as is noted experimentally. 
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If electrons in PBRs are elevated through photonic excitation to free electrons, then they may 
participate in spin-exchange interactions. In this way they may have commonality with electrons in 
semiconductor quantum dots whose electrons have been excited from the valence to the conduction 
bands. If an odd number of electrons, say three or five, are in the excited state, then they would tend 
to be in the most energetically favorable configuration, such as the singlet state depicted in Equation 
5.7. The presence of an externally applied magnetic field could then, at a given field intensity, cause a 
state change from the singlet to the triplet state, with spins aligned along the magnetic field. Recalling 
the discussion on Faraday rotation, this would provide additional electrons to interact with the 
circularly polarized light from which plane polarized light is decomposable. This would in turn increase 
the Faraday rotation in a given direction, thus increasing the overall Verdet constant.  
The way in which confinement influences the magnetic field intensity at which the transition occurs is 
open to question. It may be a simple issue of the excited electrons being brought into closer physical 
proximity with each other, and thus influencing the spin exchange interaction, or some interplay 
between a Coulombic interaction (which would tend to keep the electrons apart to minimize potential 
energy) and a spin exchange interaction, which would increase as the electrons were brought closer 
together. 
 
 

Conclusions 
 
From measurements of Faraday rotation of II-VI quantum dots and rare earth containing glasses certain 
interesting phenomena were found.  First, it was found that there was in inflection in the slope of 
optical rotation versus external magnetic field intensity.  This appeared to be related to the size of the 
quantum dots, as for CdSe quantum dots of good homogeneity in both size and sphericity; there is a 
clear decrease in the point of inflection with decreasing dot size.  The smallest of the CdSe dots, with a 
size of 1.1 nm, barely a few atoms in dimension, evidenced what appears to be two separate inflection 
points..  It is theorized that the inflections are associated with energy transitions intrinsic to quantum 
confined systems but the glass properties involving intermediate range order also play a strong part in 
the non-linear behavior observed, especially in the rare-earth containing glass samples.    
 
Whereas Faraday rotation curves are generally linear, as predicted by the classical derivation for the 
right and left rotatory indices of refraction; the experimental data demonstrated kinks in the optical 
rotation curves. These kinks were found also in borosilicate glass doped with rare earth elements. 
Subsequent work demonstrated the best fits for the plots were not polynomial, exponential, nor 
logarithmic curves, but were, indeed kink curves (or discontinuities) [38]. Significantly, these kinks were 
neither observed in the base glass, nor were they seen in NaCl salt crystals.  
A variety of possible explanations were discussed for the observed kinks. While impurity levels could 
decrease (or increase) the bandgap energies, neither would explain the kinks seen. 
Exciton confinement was noted to lower the bandgap energies, and exciton confinement in parallel 
arrays of quantum wells is believed to increase their Faraday rotation. However, as discussed above, 
exciton confinement as a cause of the effects seen has several difficulties. First, in the rare earth doped 
glasses, the regions of intermediate-range order can be expected to be highly irregular with many 
vertices. Such vertices cause piezoelectric charge build-up, and this effectively isolates electrons and 
holes, thus causing them to become uncorrelated. Furthermore, at the levels of confinement studied, 
the energies of confinement effectively uncorrelated the electrons and holes in any event, leaving 
them to behave as independent particles; and relegating the coulombic interaction between them to a 
perturbation.  
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The possible effects of Landau levels were examined as well. Here, it was determined that due to the 
high degree of electronic confinement, the formation of Landau levels would effectively violate one of 
the central postulates of quantum mechanics. Therefore they could not exist without the need to 
hypothesize huge fields of ~ 300 Tesla within the electron’s orbit. And, if one did hypothesize a 
“tunneling” of the electron through a “magnetic barrier”, one would be left with the prospect of a 300 
Tesla field within a quantum dot. This would be expected to be observable through its effects on the 
other electrons in the quantum dot; and thus far, such changes in the absorption spectrum have not 
been observed. Thus, Landau levels were discounted as a possible cause of the effect seen. 
Simple confinement energies were found to increase as ̀ inverse quadratic with respect to quantum dot 
size, whereas the kinks were found to demonstrate a linear relationship between quantum dot size and 
the magnetic field intensity at which the kinks were seen. Simple confinement was therefore discarded 
as a possible explanation.  
The existence of impurity states would be expected to increase or decrease the bandgap energies, as 
discussed above. They would not, however, be expected to cause the kinks.  
The 488 nm laser was quite close to the bandgap energy of the smallest of the CdSe quantum dots, and 
thus, a significant component of the high Verdet constants was undoubtedly due to a resonance effect. 
There were many other samples which were far enough away from resonance (0.5 – 1 eV), that 
resonance   as a cause of the kinks was discarded as well.   
 
The kinks exist as a point of commonality between the semiconductor quantum dots studied, and the 
rare earth doped glasses. The kinks, which demonstrated a linear relationship between dot size and 
magnetic field intensity, were seen at lower field intensities for the rare earth glasses than for the 
semiconductor quantum dots.  
Interestingly, and as noted above, short range order has been suggested to exist in glasses, as evidence 
by Raman spectroscopy. Such short range order may be thought of as a region of structure in the midst 
of regions of lesser ordered structuring. The surrounding disordered regions produce a potential barrier 
which simulates the bounded potential region which is a quantum dot. It is through the potential 
barrier that both structures confine electrons and phonons.  
If both structures confine electrons and phonons, which is believed to be their major physical 
characteristic, then we may look to this confinement as a source of the phenomena seen. As indicated 
above, it is possible that both structures confine several electrons (possibly three to five) which have 
been elevated through laser excitation, from the valence to the conduction band.  
It is further postulated that these electrons may assume parallel or antiparallel states. The antiparallel 
state is energetically preferred in the absence of an externally applied magnetic field. In the presence 
of such a magnetic field, however, there is a tendency for the electron spins to align with the magnetic 
field. As indicated in the Discussion section, the spin exchange integral is calculable for free electrons, 
such as may be seen in electrons elevated from the valence to the conduction bands in 
semiconductors. Then, as seen in Equation 5.13, the exchange energy is directly proportional to the 
cube root of the electron density. This relationship gives an inverse linear relationship between the 
exchange energy and the size of the quantum dot. Thus, larger quantum dots will be expected to 
evidence lower exchange energies than smaller quantum dots. Given the decrease in exchange energy 
for larger quantum dots, larger magnetic field intensity may be required to cause a transition and align 
the spins; which would in turn cause a transition in the electron spin alignment to a parallel state. The 
increase in total numbers of electrons oriented in the same direction would then be expected to result 
in greater Faraday rotation, and a higher Verdet constant, for reasons discussed above in the Theory 
section.  
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It is interesting to note that [79] the case of exchange interactions in free electrons was discussed as a 
special case, involving a simplified system. At this time, however, with the experimental availability of 
confined nanostructures, the special case may be achievable in the laboratory; and the experimental 
results presented above may be reflective of the special phenomena discussed.  
Then, as indicated in the theory section, this would allow a net increase in one of the two indices of 
refraction, n+ or n-. The increase results from an increase in the number of electrons of a single 
orientation, which can participate in spin transitions from m = -½ to +½, or vice versa. If this is the case, 
then it would be a process which could be common both to semiconductor quantum dots, as well as to 
potential-bounded regions in rare earth containing glasses. Once the spins begin alignment, the spin 
exchange energy becomes an impetus to continued electron spin alignment. It is this increased 
alignment which results both in increased magnetic moments; and which should result in higher Verdet 
constants for reasons described above.  
It is interesting that the kinks in the rare earth containing glasses occur at significantly lower field 
intensities. This may be due in part to the amorphous nature of the potential-bounded regions. As seen 
in Figures 2 and 3 electrons are confined to areas in the quantum dot when there is significant charge 
build-up at sharp vertices. These are the sort of vertices which would be expected to be common in 
amorphous confined regions, such as might be seen in rare earth doped glasses. Please note in figure 3 
the central location of the electrons in such confined regions; suggesting that physical regions in the 
amorphous potential bounded regions of rare earth doped glasses may be much smaller than the 
actual region itself. Thus, the confined region accessible to the electrons in such structures may be 
quite small indeed, and explain the lower field intensities at which the kinks are seen in these samples. 
Finally, let us compare some recent studies which may to some extent agree with our experimental 
observations. Savchuk, et. al. [84] studied the Magneto-optical faraday effect in II-VI based 
semimagnetic semiconductor nanocrystals at external magnetic fields up to 20 Tesla and at 
temperatures of 5K, however do not see any deviation from linearity in the Faraday rotation.This may 
give further credence that the intermediate order in our host glass may play a substantial part in the 
observed non-linearity in both of our groups of samples, namely the quantum dots and the rare earth 
containing glasses. 
The Faraday Effect from Cobalt single-metal nano-particles was measured by J. Szczytko, et. al. [85] at 
external magnetic fields up to 0.4 Tesla and for five different wavelengths. The nanoparticles were 
contained in organic surfactants to prevent particle aggregation. Their work contains both theory and 
measurements. The measurements demonstrate nonlinearity in the form of a smooth curve around 
external field values from ~0.025 to 0.07 Tesla. The theoretical curves agree fairly well with their 
experimental data. Again their sample environment is different from our case since no intermediate 
range order exists and their external field range is a much lower value. An additional work also exhibits 
a non-linearity in the Faraday Effect from Bismuth-Telluride quantum dots/ quantum rods in glass [86]. 
Again their nonlinearities occur at much lower external magnetic field values than the range used in 
our work. 
A magneto-optical study on ferric oxide quantum dots in a stable phosphate glass system by S. N. 
Garaje, et. al. [87] show changes in the Verdet constants which are quantum dot size dependent. 
Unfortunately, their external magnetic field is to a maximum of only 5.5 mTesla. 
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