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Introduction 
 
Bio - mimetic materials represent a class of synthetic architectures designed from knowledge of 
biology. However, nature is still far ahead of technology and therefore there is a big interest in 
understanding the generic phenomena and processes occurring in living organisms. In recent years 
intensive research has started to examine and describe the functions of channel proteins in the 
living eucaryota and procaryota cell membranes [1-4]. They separate cell interior and exterior, can 
fluctuate between open and closed states and mediate the transport of specific inorganic ions, 
primarily Na+, K+, Ca2+ cations and Cl-anions. Due to an ability of these channels to control ionic 
transport they are referred to as ion channels. In open state, they work as selective filters, 
permitting some ions to pass, but limiting the rate of passing of the others. The transported ions 
diffuse downhill the gradient of electrochemical potential, without coupling to an energy source 
(metabolic energy, like ATP). 
The cell channels open in response to specific stimulus, like: change of the voltage across the 
membrane, mechanical stress or binding ligands. Most interesting is however the ability of the 
channels to work as selective filters in the open conformation. Just this ability is a key for 
considering the ion channels as “nano - smart - machines” witch are essential for many cell 
functions, including excitability of muscle cells or conduction of electrical signaling in nervous 
system. 
Unfortunately, although more than 1000 types of ionic channels have been described with new 
ones constantly being discovered, the understanding of the selectivity mechanism in molecular 
channels in still lacking and the studies in this area cover extensively developed research activity at 
the intersection of electrochemistry and nanotechnology [5-9]. It is believed that learning and 
understanding of the selective transport of ions through the channels will give rise towards real -
 world applications and will provide guidelines to design and fabricate synthetic nanopores to be 
applied in sensing, purifying or energy conversion [10-11]. 
 
 

Modeling of the transport properties of ion channels 
 
The approaches that give conceptualization of the ionic transport across the molecular channel 
include kinetic and stochastic models (MD - molecular dynamics and BD - Brownian dynamics, 
respectively) and continuum models covering Poisson - Boltzmann (PB) and Nernst - Planck - 
Poisson (NPP) theories [5-9,12,13]. It is however not our intention to review here all these 
approaches. We aim to argue that the transportive properties of IC can be explored as arising from 
the average transport properties of electrodiffusion as stated in NPP method. Therefore, we 
present only very brief description of the other three approaches. 
 
Molecular and Brownian dynamics  
 
In molecular dynamics (MD), the trajectories of N particles are simulated from Newton’s motion 
equations [14]. The interactions between moving particles, water and amino acid functional groups 
are usually described by utilizing empirical potentials or force fields, like Coulomb or Lennard Jones 
functions calibrated by macroscopic data. Application of MD to simulate the transport of many ions 
in the molecular channel is limited by two issues: (i) a proper choice of the field, (ii) computational 
costs [7,8,14,15]. 



Nanomaterials and Nanotechnology  60 

The computational difficulties are partially eliminated in Brownian dynamics (BD) method in which 
only chosen interactions are considered. It is in particular assumed in BD that the net force acting 
on the particle can be represented as a sum of friction force and white noise with a zero mean. In 
this case, Newton equations can be replaced by Langevin stochastic equations [16,17]. 
 
Poisson - Boltzmann and Nernst – Planck – Poisson models 
 
In continuum models, the computational costs are reduced by using an approximation of 
continuous media. Poisson - Boltzmann (PB) theory predicts that the set of ions can be described 
using the charge density function represented by the Boltzmann type factor dependent upon 
averaged electric potential calculated from Poisson equation. Combing of Boltzmann expression for 
ion density with Poisson equation leads to PB equations which can be easily solved [18,19]. 
Nernst - Planck - Poisson (NPP) theory involves elecrodiffusion in which transported species are 
treated as charge densities of continuous distributions and they are calculated from NPP equations 
[20-29]. Consequently, both PB and NPP theories neglect the possible effects due to different ionic 
volumes. The other limitation concerns neglecting of non - electrostatic interactions between the 
ions.  
NPP theory has been successfully applied to model the transport of ions in liquids and 
semiconductors. Various numerical algorithms were used to solve NPP equations including: finite 
difference, finite element and finite volume methods [4,26,28,29].  
 
 

Downhill electrodiffusion of ions in the channel. General formulation 
 
The so called potassium channels, permeable mostly for potassium cations, conduct K+ 10000 fold 
better than smaller Na+ cations (the radiuses of the cations are 0.133 nm and 0.095 nm for K+ and 
Na+, respectively). Therefore, it is obvious that the normal selectivity of the channels in their open 
conformation cannot be explained by pore size and it is believed that it can be explained with 
reference to eletrodiffusion principles [26,28-30]. 
In this section we present a mathematical conceptualization of transportive properties of molecular 
channel based on electrodiffusion principles. We assume that the channel is an open cylinder which 
connects two baths with the ions (left – L and right – R). The baths are large and relatively small 
amounts of transferred ions do not change the ionic concentrations in the reservoirs.  
The present model includes:  
 

 tri- dimensionality of the channel, 
 external electrostatic potential applied to channel walls in two different ways (locally 

at two rings or linearly increasing over the entire length), Fig. 3.1. 
 
Tri-dimensionality allows for future considering complex shapes of the channel, like cavity or 
necking, and therefore it seems more convenient. Thanks to introducing the external potential a 
presence of charged amino acids at the channel walls can be mimicked as well.  
Besides we assume what follows: 
 

(i) each ionic species is treated as continuous fluid of the concentration which is a 
function of time and position  ,i ic c x t ; 
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(ii) the movement of ions perpendicular to the channel axis is allowed (3D problem); 
(iii) the downhill ionic transport is driven by concentration gradient and electric field 

(Nernst - Planck flux); 
(iv) electric field acting on the ions comes from the external potential and electrostatic 

self consistent potential induced by electric charges of the ions in the channel 
(Poisson equation); 

(v) the concentrations of the ions in the channel can be calculated from the 3D mean - 
field NPP equations; 

(vi) the ions are not allowed to escape thorough the channel walls. 
 
a) b) 
 
 

 

 
 

 

Potential at the rings Potential linearly varying 

 
FIGURE 3.1 
A scheme of a channel connecting two reservoirs of ions: a) channel geometry, b) a way of potential 

application. The segments 1 7  and *  are indicated 

 
The general equations that  govern the electrodiffusion of ions in the channel are:  
 

1) Nernst - Planck equation, which determines the flux  ,i iJ J x t  of the i -th specie 

 1, ,i N   of the charge iz  and self-diffusivity iD : 

  ,     1, ,i i i i iJ D c z c E i N      ,     (1) 

where 
F

RT
   is a temperature dependent constant, where F and R  are Faraday and gas 

constants. 
 

The above equation governs a specie’s movement driven by electric field, E , and concentration 
gradient ic . The first term in it represents Fickian diffusion flux and the second one accounts for 
the interaction with the electric field. 
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Generally the fluxes of the ions are considered as electrodiffusion fluxes and drift is ignored 
(convection, 0drift drift

i iJ c   ). It is more prospective however to include both terms and consider 
the total (diffusion plus drift) flux [4,26,28]: 

drift
i i iJ J J  ;        (2) 

 
2) The concentrations of the ions and the electric field are coupled through Poisson equation: 

E 


   .        (3) 

In the above,  is dielectric constant of the medium and   is a total time- and position dependent 

charge density, calculated as the sum of the densities of all ions: 

  1 1
, FN N

i i ii i
x t z c  

 
    .     (4) 

Equations (1) - (3) are known as NPP equations. They are coupled, i.e. the flux iJ  moves the charge 

i  and thereby changes the electric field E  and the concentration ic . Mathematically it means 
that the concentrations,  1, ,ic i N  , allow determining the total charge, 

  1, ,( , , , )i i Nx t c x t 


 
 , and the electric field   1, ,( , , , )i i NE E x t c x t


 

 . Hence the concentrations 

 1, ,ic i N   can be calculated using Nernst- Planck equations, Fig. 3.2.  

 

 
 
FIGURE 3.2 
Coupling between Nernst – Planck and Poisson equations 
 
The mass conservation requires a continuity equation to be satisfied:  
 

0i
i

c
J

t


 


 .       (5) 

In the above sources and/or sinks are neglected. 
At the stationary state the flux is independent of time and position, and: 
 

0iJ   .        (6) 
 

Combining above we get: 
 

   2 2 drifti
i i i i i i i

c
D c z c z c c

t
    


       


 for  1, ,i N  , (7)  
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where 2
1

F N
i ii

z c
 

    . 

For the channel of cylindrical symmetry the above problem can be transformed into cylindrical 
coordinates  ,x r  in 3R : 

 
2 2 2 2

2 2 2 2

1 1i i i i i i
i i i i

c c c c c c
D z z c

t r r r r x x r rx r x r
    

 
                                    

  

(8) 

for  1, ,i N   and neglected drift 0drift  , and where:
2 2

2 2 1

1 F
ε ε

N
i ii

z c
r rx r

   


  
     

   . 

 
 

Simulations 
 
The present simulations were made for the following case: 
 

(i) the channel is a cylinder of a length L   and radius R , such that      , 0, 0,x r L R  ; 

(ii) the external potential is applied to the channel walls, either at two rings or along the 
cylinder side as the potential varying linearly, Fig. 3.1; 

(iii) a medium inside the channel is water of the temperature 310 K; 
(iv) the baths contain KCl and NaCl solutions at given concentrations, thus K+, N+ and Cl- ions 

are transported through the channel: 3N   and + + -K , Na , Cli  . 
 
Boundary conditions 
 
Due to cylindrical symmetry of the channel, the Neuman boundary conditions are put at the 
rotation axis:  

0  for  0ic
r

r


 


.       (9) 

The other boundary conditions are defined on a domain 7

1 ik 
    - for the channel provided 

with the rings and 2

1 ik 
     - for the channel subjected to the potential linearly 

increasing along the channel side. The segments 1  and 2  are open ends connected to the left 
(L) and right (R) reservoirs. They are permeable and let the ions enter/exit the channel. The 
concentrations at 1  and 2  are the same as the concentrations in the baths: 

  1 1, ( , ) const   for  L
i ic t c x r   x x , 

  2 2, ( , ) const   for  R
i ic t c x r   x x  and + + -K , Na , Cli  .    

The ions cannot leave the channel through the walls ( 3 7 and  ) and zero-flux boundary 

condition is put at these fragments: 
  3 7, 0   for  iJ t   x x and  x ,     (10) 

which is equivalent to: 
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0i
i i

c z c
r r




 
 

 
.       (11) 

Besides, the boundary conditions for the potential are established: 

  3,5,7, 0  at   t
r


  


x x       (12) 

and       
       L 4 R 6 L R, =  at  ,  , =  at  ;  L Rx t x t                x x x x  

or 
     ,x t x    x ,  at x , 

where  x given by a linear dependence such that: 

 0 ( ) L Rx x L               .    

The system of Eqs. (8) - (11) was solved for the above boundary conditions using Crank-Nicolson 
difference scheme.  
 
Data 
 
To examine transport properties of cylindrical channel with external electric potential applied to 
the walls the series of numerical experiments have been made, in which we have calculated: 
 

 the concentrations of the ions, 

 electrostatic potential, 

 fluxes and flows of the ions, 
 charge distribution and the current. 

 
The program allows presenting the results as 2D maps and 3D graphs at the central cross section 
but only chosen figures are shown here. 
The data used in simulations are summarized in Tables 3.1-3.2, 3.4-3.6 and the scheme of the 
performed numerical experiments is shown in Fig. 3.3. 
For further convenience, we will be using in the following the symbols A-C to distinguish various 
compositions, preceded by either “1” or “2” for various ways of application of the potential, as 
defined in the last row of Table 3.1. 
The time evolution and the effects of the channel dimensions, applied voltage and potential 
distribution (green color in Fig. 3.3) are studied for one chosen set of data (Experiment 1B for the 
linearly varying potential), Figs. 3.4, 3.11. For other experiments (grey color) we present the 
concentration, charge density and potential distributions in the channel at the stationary state 
(Figs. 3.5-3.10).  
 
TABLE 3.1 
The constant parameters used in simulations of the ionic transport in the channel 
 

Ions Medium: water 
K+ Na+ Cl- Temperature: 310 K 

Diffisivity  [m2/s] Dielectric constant εw=80 ε0=708,335×10−12 F/m 

ߛ 10-9∙2.03 10-9∙1.33 10-9∙2.2 =
ܨ
ܴܶ = 37.44 C/J 
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TABLE 3.2 
The data used in the simulations 
 

Ex. 
 

Concentrations [mol/m3] 
Channel dimensions 

Length, L [nm] Radius, R [nm] 

Left bath Right bath 
10 5 

Potential  
Ions Ions 1. at the rings 2. varying linearly 

 Na+ K+ Cl- Na+ K+ Cl- L  

[mV] 
R  

[mV] 

  

[mV] 
L  

[mV] 
R  

[mV] 

   

[mV] A 250 250 500 25 25 50 

B 250 25 275 25 250 275 
20 -10 30 20 -10 30 C 250 25 275 250 25 275 

Experiments:  1A, 1B, 1C, 2A, 2B, 2C 
 

 
 
FIGURE 3.3 
Scheme of the performed numerical experiments. In green numerical experiments performed entirely for the 
experiment 1B 
 

Simulations

Potential

varying linearly

L:   cNaCl=250mM,

cKCl=250mM 

P:   cNaCl=25mM

cKCl=25mM

L:   cNaCl=250mM

cKCl=25mM 

P:   cNaCl=25mM

cKCl=250mM

Time evolution Voltage effects

Constant 
potential 

difference

Current-voltage 
characteristics

Dimensions 
effects

Varying channel 
length

Varying channel 
radius

L: cNaCl=250mM

cKCl=25mM

P: cNaCl=250mM,

cKCl=25mM

Potential

applied to the

rings

L: cNaCl=250mM

cKCl=250mM

P:cNaCl=25mM,

cKCl=25mM

L: cNaCl=250mM,

cKCl=25mM

P:  cNaCl=25mM

cKCl=250mM

L: cNaCl=250mM

cKCl=25mM 

P:  cNaCl=250mM

cKCl=25mM

1A 1B 
2A 

2B 

1C 

2C 
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Results 
 
The results of the calculations are presented in Figs. 3.4-3.11 and tables 3.3-3.5. 
 

time 
81.2 10t s   81.2 10t s   81.2 10t s   Steady state 

 
 
FIGURE 3.4 
Time evolution of the total charge density in the channel in comparison with the results for the stationary 
state. 2D maps (first row) and 3D graph (second row).  
The results for the channel with the voltage increasing linearly between -10 mV and 20 mV from the right to 
the left end of the channel, Experiment 1B in Table 3.2 and Fig. 3.3. 
The charge density given inF/m3 
 
In the next set of figures, Figs. 3.5-3.9 the results obtained for various concentrations of the ions in 
the baths are compared (Experiments 1A-C, 2A-C). 
The series of the results are for different ways of application of the external potential but the same 
potential differences (voltages):   and   . The respective figures show: concentration of the 
ions, Figs. 3.5-3.7, potential, Fig. 3.8, and total charge distribution, Fig. 3.9. 
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Potential Experiment A Experiment B Experiment C 
1. 
Increasing 
linearly between -
10 mV and 20 mV 
from the right to 
the left end: 

30mV   
 
2. 
Applied at the 
rings only: 

30mV   

 
FIGURE 3.5 
2D maps of the concentration of the potassium ions in the channel, at the central cross section. The results for 
various concentrations of the ions in the baths, Experiments 1A-C, 2A-C. Concentrations in mol/m3 
 

Potential Experiment A Experiment B Experiment C 
1. 
Increasing 
linearly between -
10 mV and 20 mV 
from the right to 
the left end: 

30mV   
 

 

2. 
Applied at the 
rings only: 

30mV   

 
FIGURE 3.6 
2D maps of the concentration of the sodium ions in the channel, at the axis intersection. The results for 
various concentrations of the ions in the baths, Experiments 1A-C, 2A-C. Concentrations in mol/m3 
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Potential Ex. A Ex. B Ex.C 
1. 
Increasing 
linearly between -
10 mV and 20 mV 
from the right to 
the left end: 

30mV   
 
2. 
Applied at the 
rings only: 

30mV   

 
FIGURE 3.7 
2D maps of the concentration of the chlorine ions in the channel, at the axis intersection. The results for 
various concentrations of the ions in the baths, Experiments 1A-C, 2A-C. Concentrations in mol/m3 
 

Potential Ex. A Ex. B Ex.C 
1. 
Increasing 
linearly between -
10 mV and 20 mV 
from the right to 
the left end: 

30mV   
 

 

2. 
Applied at the 
rings only: 

30mV   

 
FIGURE 3.8 
2D maps of the electrostatic potential in the channel, at the axis intersection. The results for various 
concentrations of the ions in the baths, Experiments 1A-C, 2A-C. Potential in mV 
 
 
 
 
 
 
 



Nanomaterials and Nanotechnology  69 

Potential Ex. A Ex. B Ex.C 
1. 
Increasing 
linearly between -
10 mV and 20 mV 
from the right to 
the left end: 

30mV   

 
2. 
At the rings 
 only: 

30mV   

 
FIGURE 3.9 
2D maps of the total charge distribution in the channel, at the axis intersection. The results for various 
concentrations of the ions in the baths, Experiments 1A-C, 2A-C. The charge density inF/m3 
 
The results confirm a coupling between charge (ion) distribution and the potential. The potential 
disturbs the concentration of the ions in the channel and vice versa. 
From the concentrations the fluxes have been calculated and hence the overall flows of the ions 
and the total flow of the charges (current) in the channel have been determined, Table 3.3.  
 
TABLE 3.3 
Overall flows of K+, Na+ and Cl-ions through the channel for various concentrations in the baths, Experiments 
1A-C, 2A-C 
 

Potential Ex Current x 1010 
[A] 

Flow x 1015[mol/s] 
Na+ K+ Cl- 

1. varying linearly between -
10 mV and 20 mV from the 
right to the left end:

30mV   

A 3,3 3,2 5,2 4,9 
B 3,3 3,1 -2,5 -2,6 

C 4,4 1,6 0,2 -2,5 

2. applied at the rings 
only: 30mV   

A -0,6 2,4 4 6,8 
B -1,15 2,3 -3,6 -0,2 
C 0,3 0,1 0,02 -0,18 

 
The results confirm that the flow is constant along the channel which is an expected result for the 
stationary state. The calculated flows are compared in Table 3.3 and Fig. 3.10. Positive flow refers 
to the movement of the ions from the left to the right bath. It is clearly seen that a way of 
application of the potential is essential for the transportive channel properties. In particular the 
transport of the ions can be forced by the potential difference only, at zero concentration gradient.   
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a)     b) 

  
 
FIGURE 3.10 
Overall flows of the ions(a) and the current in the channel (b);  crosses – for the linearly varying potential, 
spots – for the potential applied at the rings; green – sodium ions, red – potassium ions, blue – chlorine ions. 
The results for the experiments 1A-C, 2A-C 
 
The potential differences (voltage) between the left and right ends of the channel are summarized 
in Tables 3.4-3.5 and Fig. 3.11. The presented results have been obtained for the channel with the 
potential linearly varying, Experiment 1B. It seen that for the same concentrations and the same 
voltage, 30mV  , the current and ionic flows are the same, i.e. they do not depend on the 

boundary  potentials but on their difference only, Table 3.4. 
The dependencies between the flows of the ions and the voltage are presented in Table 3.5 and Fig. 
3.11a. In Fig. 3.11b the current-voltage characteristics is shown. In all cases linear dependencies are 
observed, characteristic for ohmic-like behavior. The results confirm that application of the 
potential of given difference between the channel entrance and exit allows controlling both the 
direction and the heights of the flows of the ions. 
It means that the potential is a decisive factor for the selectivity of the channel.  
 
TABLE 3.4 
Overall flows of K+, Na+ and Cl- ions and the current in the channel subjected to the same voltages but various 
left and right boundary potentials. The results for the experiment 1B 
 

Left 

L [mV] 
Right 

R [mV]    [mV] 
Current x 1010 

[A] 

Flow x 1015[mol/s] 
Na+ K+ Cl- 

-20 10 -30 3,3 3,1 -2,5 -2,6 

-10 20 -30 3,3 3,1 -2,5 -2,6 

0 30 -30 3,3 3,1 -2,5 -2,6 

10 40 -30 3,3 3,1 -2,5 -2,6 

20 50 -30 3,3 3,1 -2,5 -2,6 

30 60 -30 3,3 3,1 -2,5 -2,6 
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TABLE 3.5 
Overall flows of K+, Na+ and Cl- ions and the current in the channel subjected to various voltages. The results 
for the experiment 1B 
 

Left 

L [mV] 
Right 

R [mV]    [mV] 
Current x 1010 

[A] 
Flow x 1015[mol/s] 

Na+ K+ Cl- 

20 -10 30 3,3 3,3 -2,5 -2,6 

10 -10 20 1,7 3 -3 -1,8 

0 -10 10 0,1 2,6 -3,4 -1 

-10 -10 0 -1,48 2,2 -3,9 0 

-20 -10 -10 -3,1 2 -4,4 1 

-30 -10 -20 -4,8 1,8 -5 1,8 

-40 -10 -30 -6,6 1,5 -5,5 2,75 

 
The next series of calculations have been made for the ionic channels of various dimensions. The 
results are summarized in Table 3.6. The data present total current and the flows of the ions. 
Besides average fluxes and current density, calculated as the flows/current divided by the channel 
cross section area are presented.  
It is seen that both current density and average fluxes increase with narrowing of the channel. It is 
an obvious effect of the electricfield which in the narrow channel is stronger. Of course the total 
current/flows decrease in the narrow channel. 
 

a) b) 

  
 
FIGURE 3.11 
Flow of ions vs. voltage (a) and current voltage characteristics (1b) for the channel. The results for the 
experiment 1B  
 
 
 
 
 
 
 
 
 
 



Nanomaterials and Nanotechnology  72 

TABLE 3.6 
Total current, current density, overall flows and average fluxes of the ions in the channels of various sizes.The 
results for the experiment 1B 
 

ΔV 
[mV] 

Length 
L [nm] 

Radius 
r [nm] 

Current  
x 1010 

[A] 

Current 
density  

x 1029 [A/m2] 

Overall flow x 1015 

[mol/s] 
Average flux x 1033 

[mol/s·m2] 
Na+ K+ Cl- Na+ K+ Cl- 

30 

30 5 1,6 0,204 1,2 -0,7 -1,2 0,015 -0,155 -0,780 

20 5 2,2 0,280 1,7 -1,1 -1,6 0,022 -0,121 -0,421 

10 5 3,3 0,420 3,3 -2,5 -2,6 0,042 -0,073 -0,132 

10 2,5 1,28 0,652 0,8 -0,5 -0,9 0,041 -0,249 -1,146 

10 0,5 0,066 0,840 0,04 -0,045 -0,017 0,051 -8,952 -2,672 

 
 

Summary 
 
Ion channels, present in biological membranes, have an important role in maintaining living cells. 
Despite new technologies that allow an examination of the channel structure, the fundamental 
functioning of this nature wonder are still not well understood, particularly the selectivity 
mechanism remains a mystery. New insights of the transportive properties of the channel can be 
revealed using numerical simulations.  
In this chapter a new 3D model of the channel with the walls subjected to the external potential 
has been presented. The results confirm that the potential distribution is mainly responsible for the 
selectivity mechanism. The advantages of the model are: tri-dimensionality and possibility of 
including drift which seem particularly prospective as far as real biological systems are considered. 
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