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Introduction to Emerging Photovoltaic Technologies 
 
The quality of human life is strongly dependent on the availability of energy sources. Increased 
energy demand (currently, the total worldwide energy consumption is about 14 terawatts) and 
environmental pollution require a swift transition to new, green technologies for energy generation 
[1, 2]. Different approaches were followed for finding and developing sustainable energy solutions. 
Among the alternative power sources existing today (hydroelectric, nuclear, biomass, wind, 
geothermal, and solar), solar energy is by far the largest exploitable resource. Enough to say that 
sunlight striking Earth’s surface in 1 hour provides more energy than all the energy consumed by 
human civilization in one year [3]. 
Consequently, the design and manufacturing of a high - performance and low - cost photovoltaic 
cells, able to replace fossil fuel and related technologies, is assumed as an urgent task for 
multidisciplinary scientific teams worldwide [4, 5]. Considering the increasing demand for 
renewable energy, solar power companies are focused nowadays on manufacturing and installing 
solar panels [6]. 
Due to the most mature technology for photovoltaic cell manufacturing, the main material used 
remains silicon [7]. Though Si solar panel technology exhibits many benefits (e.g. longevity, 
efficiency, lower installation costs [8]), it also yields several drawbacks that need to be considered: 
 

 Cost: Traditional silicon cells use ultra-high purity silicon, which is very expensive;  
 Silicon absorbs sunlight poorly: According to Prof. Michael Grätzel, from École 

Polytechnique Fédérale de Lausanne: ”silicon solar cells use 1.000 times more light 
absorbing material than dye–sensitized solar cells and perovskite cells“; 

 Silicon is very brittle. 
 

Despite the worldwide spread of the silicon-based solar modules, other emerging photovoltaic 
technologies have received considerable attention in the last few decades, due to their promising 
performance and low production costs. Among them, one can enumerate organic photovoltaics, 
hybrid organic-inorganic solar cells, perovskite photovoltaics, inorganic quantum dots solar cells, 
dye-sensitized solar cells. 
An organic photovoltaic (OPV) cell is a type of solar cell that uses organic electronics, such as small 
organic molecules (chlorophyll-a, fullerene, pentacene - Figs. 6.1-3) or conductive organic polymers 
(MEH-PPV - Fig. 6.4, CN-PPV, PPV, polyacetylene, etc.), for performing light absorption. Typically, 
they are sandwiched between two electrodes [9].  
Comprising a sandwiched organic material between two electrodes with different work functions, 
single layer organic photovoltaic cells are the simplest form of OPVs, but their efficiencies are 
modest. 
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FIGURE 6.1  
The structure of chlorophyll A  
 

 
FIGURE 6.2 
The structure of fullerene C60  
 

 
 
FIGURE 6.3 
The structure of pentacene 
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FIGURE 6.4  
The structure of MEH-PPV 
(Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-
phenylenevinylene]) 

 
Bilayer OPV cells contain two layers placed between conductive electrodes. This type of OPVs, 
manufactured in different architectures (planar donor-acceptor heterojunction or bulk 
heterojunction – Figs. 6.5a-b), do exhibit superior performances compared to single layer OPVs. 
The layer with higher electron affinity and ionization potential is the electron acceptor layer (it 
mainly transports electrons), while the other, with lower electron affinity ionization potential, is the 
electron donor layer (it mainly transports holes). After capturing a photon, a bound electron-hole 
pair (an exciton) is generated. For obtaining free carriers (electrons and holes), this exciton needs 
to be dissociated. An efficient exciton dissociation occurs at the interface between two organic 
materials (or at the interface between an organic material and the metal electrode, in the case of 
single layer cells).  For this reason, the area of this interface is made as large possible in the case of 
the bulk heterojunction structure. After the exciton dissociation, electrons move to the acceptor 
domains, are carried through the device and collected by one electrode, while holes move in the 
opposite direction and are collected at the other side (Fig. 6.5c)[10].  
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a) Bilayer planar donor-
acceptor heterojunction 

b) Bilayer bulk heterojunction c) Energy bands diagram 

 
FIGURE 6.5 
Bilayer OPV cells 
 
Among the merits of OPV solar cells, one can enumerate: 
 

  They are thin and light, thus, they can be used in flexible solar modules; 
  They are cheaper than Si-based solar cells; 
  They have high optical absorption coefficient due to the organic molecule; 
  Their band gap can be modified via molecular engineering (i.e, by modifying the length 

and type of functional groups on the polymer backbone). 
 
On the other hand, OPV cells exhibit low efficiency (maximum certified value is 11, 5%) and low 
stability [11].  
Another emergent photovoltaic technology is that of perovskites solar cells. These devices employ, 
as light absorber, compounds with perovskite crystal structure, methyl ammonium lead triiodide 
((CH3NH3)PbI3) being the most widely used [12, 13]. From the commercial perspective, perovskites 
solar cells are still under development, no products being yet available on the market. The 
maximum certified efficiency for this type of solar cell is 22.1%, demonstrated in 2013 [14 - 16]. 
Synthesis of materials such as methyl-ammonium lead halides is versatile and cheap. In order to 
emphasize the huge potential of this emergent photovoltaic technology, it is enough to note that 
their appearance allowed the increase of solar cells efficiency from 3.8 % in 2009 to 22.1% only one 
year later. 
The aim of this book chapter is to discuss two emerging photovoltaic technologies, inorganic 
quantum dots sensitized solar cells (QDSSCs) and dye-sensitized solar cells (DSSCs), in terms of 
design, manufacturing and performance. A special attention will be paid to the synthesis and 
molecular engineering of light absorbers (inorganic quantum dots and organic dyes). The chapter 
will conclude with a comparison between the two types of light absorbers in terms of cost, 
versatility of synthesis, stability, power conversion efficiency, manufacturing scalability, toxicity and 
related environmental issues. 
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Quantum Dot-Sensitized Solar Cells (QDSSCs) 
 
Introduction 
 
Among the emerging photovoltaics technology, quantum dot – sensitized solar cells (QDSSCs) 
received a great attention in the last decades due to their distinctive properties, such as theoretical 
conversion efficiency up to 44%, simplicity in manufacturing, capacity to realize light harvesting in a 
broad solar spectrum regions [17, 18]. Two possible schematic diagrams of QDSSCs are presented 
in Fig. 6.6 below. 
 

 

 

 

 
FIGURE 6.6a)  
Schematic diagram of a QDSSC with electrolyte as hole transport layer: Cell structure (left) and Energy bands 
diagram (right) 
 

 
 

 
FIGURE 6.6b)  
Schematic diagram of a QDSSC with p-type semiconducting polymer as hole transport layer: Cell structure 
(left) and Energy bands diagram (right) 
 
The working principle of the QDSSCs is the following: after being irradiated by the incident light, 
quantum dots (QDs) absorb photons yielding electron – hole pairs. Electrons are injected into the 
conduction band of an n-type wide band gap semiconductor, like TiO2 or ZnO, and transported 
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towards the TCO (transparent conductive oxide) electrode (typically, ITO), while holes are 
scavenged by hole transport material (an electrolyte or a p-type semiconducting polymer). When 
polymer are employed (Fig. 6.6b) as hole transport materials, glass substrate, typically used for 
encapsulation purposes, is no longer required. As counter electrode, metals with high work 
function (such as Pt, Au, Ag), suitable for obtaining ohmic contacts with p-type semiconductors, 
should be used.  
But what are the quantum dots (QDs), why are they used as light absorbers in photovoltaic devices 
and how can they be synthesized? QDs are extremely small semiconductors particles or 
nanocrystals, consisting of elements of II-VI, III-V, or IV-VI periodic groups, with typical dimensions 
in the nanometer range (2-10 nm or 10-50 atoms [19, 20]). Due to their small size, QDs exhibit 
unique optical and electronic properties. Thus, in the last decades, QDs have attracted considerable 
attention and employed in various applications: optoelectronic devices (such as lasers), 
photovoltaic devices, transistors, photodetectors, light emitting diodes (LEDs), quantum computing 
[21-26]. Water-soluble and bio-conjugated QDs proved useful in biosensors and bio-imaging [27, 
28]. 
QDs are used as light absorbers in photovoltaic devices due to the following characteristics: 
 

 Tunable bandgap over a broad spectral range by changing their size [29]; 
 Larger extinction coefficient than most organic dyes [30]; 
 Solution processability [30]; 
 Multiple exciton generation with single photon absorption and large intrinsic dipole 

moment [31]; 
 Versatile and low- cost synthesis [32]; 
 Chemical stability towards water and oxygen [32]. 

 
Synthesis of quantum dots 
 
There are several methods to synthesize QDs, the most common involving colloidal quantum dots 
(CQDs). Narrow size distribution is the key target for the majority of CQDs synthesis process. The 
preparation of monodisperse CQDs implies two stages: 
 

 Rapid nucleation, process controlled by degree of supersaturation in solution, 
temperature and interfacial tension; 

 Slow growth [33-36]. 
 
Usually, QDs are synthesized in an organic medium and employ surface passivating reagents, 
known as capping ligands, such as tri-n-octylphosphine oxide (TOPO), tri-n-octylphosphine (TOP), 
oleic acid, dodecanethiol [37, 38]. The type of capping ligand has a crucial importance because the 
shape, optical and electronic properties of the QDs depend on it [39]. The major drawback of using 
these ligands in passivation is their rapid desorption from the surface of the QDs. Moreover, the 
steric hindrance between the bulky organic surfactants used for passivation yields incomplete 
surface coverage and un-passivated dangling orbitals [40]. 
A more efficient passivation can be obtained through the formation of a QD semiconducting core 
material and of a shell from another semiconducting material. Examples of these core–shell 
semiconducting nanocrystals are: CdS - HgS, CdS - CdSe and ZnSe - CdSe [41]. Another method for 
the fabrication of QDs is plasma synthesis [42, 43]. However, colloidal synthesis remains the most 
versatile and cheapest method for QDs synthesis. 
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Approaches for depositing QDs on TiO2 surface 
 
There are several methods to deposit QDs on the surface of TiO2: 
 

 Successive ionic layer - by - layer adsorption and reaction (SILAR) [44]; 
 Chemical bath deposition [45, 46]; 
 Drop casting or spin-coating [47]; 
 Electrophoretic method [ 48]; 
 Bifunctional linker approach [49]. 

 
All these approaches are simple and can be successfully implemented in a large scale production. 
 
Bifunctional linker approach. An HSAB perspective 
 
One of the most used method to anchor the QDs to the TiO2 surface is their functionalization with 
bifunctional linkers (ligands) [50]. Usually, the role of the bifunctional linker is to improve the 
charge transfer from the QD to the n-type semiconductor (in most cases, TiO2). 
Bifunctional linkers have anchors at both ends. Different carboxylic acids - such as 
mercaptohexadecanoic acid, mercaptopropionic acid, thiolacetic acid – can be employed to bind 
QDs to TiO2 nanoparticles [51, 52]. Several structural features of the linkers, such as length and 
conjugation, are important to improve the charge transfer efficiency. Choosing the appropriate 
anchors is the sine qua non condition to ensure strong chemical bonds at the QDs – TiO2 interface. 
Recently, the Hard Soft acid Bases (HSAB) theory was proposed as a new tool employed in QDs 
functionalization [53 - 58]. Based on this theory, different type of QDs, having cations which are 
classified either as soft acid or as borderline acid, can be functionalized with different linkers that 
have anchors classified as soft base or borderline base, respectively. It is important to emphasize 
that according to the HSAB principle, a hard acid prefers to bond to a hard base, a soft acid prefers 
to bond to soft bases, while a borderline acid prefers to bond to a borderline base. 
In accordance with the HSAB rule, for QDs such as CdS, CdTe, CdSe, Cu2S, Ag2S, having cations 
classified as soft acids, several bifunctional linkers were proposed for functionalization: 
 

 Selenocompounds, such as selenolipoic acid (Fig. 6.7) selenopenicillamine, 
selenomethionine, selenohomocysteine, selenocystine, Se-methylselenocysteine, Se-
propylselenocysteine, Se-ethylselenocysteine, selenogluthatione (Fig. 6.8), Se-
methylselenocysteine, Se-allylselenocysteine [59]; 
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FIGURE 6.7  
The structure of selenolipoic acid  

FIGURE 6.8  
The structure of selenoglutathione  
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 Antibiotics that belong to the penicillin class, such as oxacillin (Fig. 6.9), penicillin G, 
piperacillin, cloxacillin, ticarcillin, penicillin V, ampicillin, amoxicillin [60]; 
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FIGURE 6.9 
The structure of oxacillin 
 

 Vitamins and analogues, such as biotin, norbiotin, homobiotin [60]; 
 Aminoacids, such as cysteine, homocysteine, isocysteine, carbocysteine (Fig. 6.10), 

acetylcysteine, S-allylcysteine (Fig. 6.11), S-propylcysteine, S-phenylcysteine, S-
tertbutylcysteine [60, 61]; 
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FIGURE 6.10  
The structure of carbocysteine  

FIGURE 6.11 
The structure of S-allylcysteine 

 
 Phosphonic acids, such as 1-hydroxiethane-1,1 diphosphonic acid (HEDP - Fig. 6.12), 

propane 1,1 diphosphonic acid (Fig. 6.13), benzene 1,4 diphosphonic acid [62]; 
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FIGURE 6.12  
The structure of HEDP 

FIGURE 6.13  
The structure of propane 1,1 diphosphonic acid 

 
 Cephalosporins, such as cefditoren, ceftazidime, cefonicid, ceftezol, cefaclor, cephalotin, 

cefradine, cefdinin, cephalosporine C, cefcapene, cefapirin, cefacetrile, cefalexin, 
cefpiramide, cefaloglycin, ceforamide, cefprozil [63]; 

 2-[2-oxothiolan-3-yl) carbamoylmethylsulfanyl] acetic acid, 2-mercapto-5-benzimidazol-
carboxylic acid, phitic acid, 2-mercapto-5 benzoxazole–carboxilic acid, pentetic acid, 4-
mercapto hydrocinnamic acid, 2-[2-ethoxycarbonylmethylsulfanyl)ethyl]-1,3-thiazolidine-4 
–carboxylic acid, 3- (phenyltio)acrylic acid, lipoic acid, hexyl 3 mercaptohexanoate, hexyl3-
mercaptobutirate, hexyl2-mercaptoacetate, asparagusic acid, 2-acetylamino-3- 
benzylsulfanyl propanoic acid, dimercaptoizobutiric acid and 2-mercapto histidine [64, 65]. 



Science and applications of Tailored Nanostructures  97 

All the bifunctional linkers listed above contain anchors (mercapto groups, sulfur atoms, 
phosphonic groups), able to covalently bind to the QDs (CdSe, CdTe, CdS, Ag2S) surface, and 
carboxylic or phosphonic moieties for anchoring to the surface of TiO2.  
Figure 6.14 illustrates the anchoring of dihydrolipoic acid onto a nanostructured TiO2 film through 
the carboxylic group (COOH).Functional derivatives of carboxylic acid (such as amides, ethylic esters, 
acid chlorides) can also be used as alternatives to the COOH groups.  
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FIGURE 6.14  
Linking bifunctional linkers (dihydrolipoic acid) to TiO2 surface through carboxylic groups 
 
Fig. 6.15 depicts how QDs (CdSe, CdTe, CdS – all soft acids) can be linked to the TiO2 surface 
through dihydrolipoic acid comprising mercapto groups (soft base) as appropriate anchors. 
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FIGURE 6.15 
Linking QDs (CdSe or CdTe or CdS) to TiO2 surface using dihydrolipoic acid as bifunctional linker 
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Wide band-gap semiconductors 
 
Titanium dioxide (TiO2) is a well-known metal oxide, stable, non-toxic and widely used in a variety 
of applications and products such as: sunscreens, water purification, toothpaste, food coloring 
(E171), photovoltaic cells, photocatalytic degradation of pollutants, biosensing, and drug delivery. It 
has 4 polymorph phases: rutile (tetragonal, the most stable phase), anatase (tetragonal), brookite 
(orthorhombic), and TiO2 (B) (monoclinic) [66, 67]. 
TiO2 is extensively used as wide band-gap semiconductors for manufacturing QDSSCs due to its 
excellent properties [68]: 
 

 Good chemical stability; 
 High corrosion resistance; 
 Elevated hardness; 
 Low - cost synthesis; 
 Good charge transport properties. 

 
It has been demonstrated that the efficiency of electron injection and light harvesting in QDSSCs 
depends strongly on the morphology, size and structure of TiO2. Thus, different types of TiO2, such 
as nanotubes [69, 70], nanorods [71], nanowires [72], mesoporous [73], porous [74, 75], spheres 
[76], nanoflowers [77] and nanodendrite array [78], were used as photo-anodes in order to 
improve the performance of QDSSCs.  
Among the most commonly used methods for TiO2 synthesis, one can enumerate the sol-gel 
method [79, 80], the hydrothermal [81] and the electrochemical one [82]. Recently, crystalline 
mesoporous B/N co-doped TiO2 nanomaterial [83] and Ni-doped TiO2 thin films [84] have been 
prepared in order to improve the performance of QDs-based photovoltaic devices. 
ZnO is another wide band-gap semiconductor used as photo-anode in design and manufacturing of 
QDSSCs. As in the case of TiO2, different polymorphic ZnO semiconductors, such as nanorod arrays, 
nanoflowers, nanotubes, pyramids arrays, nanosheets, were synthesized and tested [17]. 
 
Hole transport layer 
 
Sulfide / polysulfide (S2- / Sn

2-) is the most used aqueous electrolyte employed as hole transport 
layer in the design and manufacturing of QDSSCs [85, 86]. Other tested electrolytes are Co2+/Co3+ 
[87] and Fe2+/Fe3+ [88] redox system. The major drawbacks of using a liquid electrolyte is its 
volatilization (lowering its long–term stability, which is an important criterion when 
commercializing photovoltaic devices) and the permeation of oxygen and water molecules [89].  
These issues can be solved by replacing the liquid, volatile electrolyte with solid state p-type 
semiconducting polymers. Poly (3, 4-ethylenedioxithiophene) – poly (styrenesulfonate), MEH-PPV, 
poly (3-dodecylthiophene), P3HT are examples of semiconducting polymers which were used as 
holes conductor in QDSSCs [90, 91].The power efficiency of QDSSCs is strongly dependent on the 
charge transfer at the interface between the QDs and the semiconducting organic polymer. A 
covalent bond between the QDs and the polymer increases the charge transfer and avoids the 
segregation of phases.  
The HSAB theory can be employed as a useful tool for the functionalization of polymers with 
suitable pendant anchors, in order to create a covalent bond at the QDs - holes conductor interface. 
Thus, for QDs like CuO, ZnO Bi2S3, PbS, Sb2S3, PbSe (all comprising cations which are classified as 
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borderline acids), several polymers, such as polythiophene tailored with pyridine group (borderline 
base - Fig. 6.16), were proposed for the design of QDSSCs [52 - 58, 60 - 62]: 
 

S

(CH2)p S N

n
 

 
FIGURE 6.16  
The structure of polythiophene tailored with pyridine moiety (p is 6 - 12) 
 
At the same time, for different types of QDs, like CdS, CdTe, CdSe, Cu2S, Ag2S (all comprising cations 
which are classified as soft acids), several polymers, such as polythiophene tailored with mercapto 
or phosphonic moieties (soft base – Fig. 6.17), were proposed for the design of QDSSCs [52 - 58, 60 
- 62]: 
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FIGURE 6.17 
The structure of polythiophene tailored with mercapto (mercaptide group) moiety (p is 6-12) 
 
Figure 6.18 shows how a hole conductor polymer (poly[3-(ω-mercapto hexyl)]thiophene) can be 
linked to the QDs (CdSe, CdTe, CdS – soft acids) surface, using mercapto groups (soft base) as 
appropriate anchors, selected based on the HSAB theory. 
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FIGURE 6.18  
Linking a hole conductor polymer (poly[3-(ω-mercapto hexyl)]thiophene) to the QDs surface (CdSe, CdTe or 
CdS), using HSAB theory principles 
 
As presented in Fig. 6.19, strong QD - hole conductor polymer interface can be obtained by using 
polymers designed according to specific principles of coordination chemistry [64]. 
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FIGURE 6.19  
The structure of polythiophene with 8- hydroxi quinoline as pendant group 
 
Counter electrode  
 
Counter electrodes play a vital role in the QDSSCs structure, although they generally receive less 
attention than the QDs and the wide band-gap semiconductors. The role of the counter electrode is 
to transfer electrons from an external circuit and reduce the oxidized species of the electrolyte. 
Different materials can be used as counter electrode in QDSSCs: noble metals (like Pt, Au, Al), Ti 
mesh supported mesoporous carbon (MC/Ti) [92], iron sulfide (which is prepared by simply 
immersing carbon steel in Na2S solution) [93], mesocellular carbon foams (MSU-F-Cs) with high 
surface area (911 m2 g−1) and large pores (~ 25 nm)[94], nanostructured metal chalcogenides (such 
as NiS [95] and CoS [96]), conducting polymers (like polypyrrole, polyaniline and poly(3,4-
ethylenedioxythiophene)), polystyrene sulfonate (PEDOT-PSS), and combinations of these materials 
[97].  
The morphologies and performance of counter electrodes can be investigated with different 
techniques, such as: scanning electron microscope (SEM), transmission electron microscope, X-ray 
diffraction, current density – voltage measurements, Tafel polarization measurements, 
electrochemical impedance spectroscopy (EIS), cyclic voltammetry [97]. 
 



Science and applications of Tailored Nanostructures  101 

The performance of QDSSCs 
 
Despite QDSSCs theoretical conversion efficiencies up to 44%, experimental measured values of 
this parameter are still low. The limiting factors for efficiency enhancement are: 
  

 Insufficient light absorption; 
 Electrons-holes recombination in the electrolyte; 
 Slow charge transfer process between the counter electrode and the electrolyte [17]. 

 
In recent years, several approaches have been pursued to improve the performance of QDSSCs. 
Despite of all the advantages of QDs, QDSSCs laboratory-measured were typically around 4-7%. The 
maximum QDSSC certified efficiency (11.6%) was obtained when using Zn−Cu−In−Se as QD [98]. 
 
 

Dye-Sensitized Solar Cells (DSSCs) 
 
Introduction 
 
In the early 1990s, Brian C. O’ Regan and Michael Grätzel published a paper on a breakthrough 
work in manufacturing solar cell devices, introducing a new class of photovoltaic devices, dye – 
sensitized solar cell (DSSC) [99]. At the core of these devices, there is a porous network of TiO2 
nanoparticles coated with light – absorber dye molecules and surrounded by a hole conductor 
(usually, a liquid phase electrolyte) [100]. A schematic diagram of DSSCs is presented in Fig. 6.20, 
below. 
 

 
FIGURE 6.20  
Schematic diagram of a DSSC: a) Cell structure; b) Energy bands diagram 
 
The operational principle of DSSCs is pretty straight forward. Due to the irradiation with light, the 
dye molecules absorb photons and get into an excited state. In this excited state, the dye injects 
electrons into the conduction band of TiO2 (instead of TiO2, ZnO, SnO2 or SrTiO3 can also be 
employed). Further on, electrons are transported through the TiO2 network to the TCO 
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(transparent conductive oxide) electrode (typically, ITO). The initial state of the dye is restored by 
the electron donation from the electrolyte that is regenerated at the Pt layer, which acts as counter 
electrode [101]. Pt is coated on the substrate (typically, glass) for the efficient regeneration of the 
redox couple. In the case of solid-state DSSCs, the liquid electrolyte is replaced with a hole 
conducting polymer. The blocking layer is typically a layer of TiO2 (prepared by the sol-gel method, 
for instance). Its role is to prevent the direct contact between the TCO electrode and the redox 
mediator in the electrolyte [102]. Each component of this architecture can be optimized in order to 
improve the overall efficiency of the photovoltaic device. 
The main processes occurring in a DSSC are summarized below [103]: 
 

 The dye adsorbed on the TiO2 (or ZnO, SnO2, etc.) surface absorbs incident photons, being 
excited from the ground state (S) to the excited state (S∗): 
 

S  +  h                    S*
 

 
 The excited electrons are injected into the conduction band of the semiconductor. As a 

consequence, the oxidation of the dye molecule occurs: 
 

S*                   S+   +   e  (TiO2)-

 
 

 The electrons injected in the TiO2 conduction band are transported by the TiO2 
nanoparticles towards the TCO electrode and finally reach the Pt counter electrode 
through the external circuit; 

 The oxidized dye molecule is regenerated by accepting electrons from the reducing agent 
in the electrolyte; 

 The oxidized redox mediator diffuses towards the counter electrode and then it is reduced. 
 

Although its conversion efficiency is still less than the exhibited by state-of-the-art thin-film cells, 
the DSSC has a number of attractive features, such as [104-106]: 
 

 Low production cost;  
 Flexibility; 
 Reduced weight; 
 Employment of conventional roll-to-roll techniques for its manufacturing; 
 Use dyes with tunable optical properties; 
 Employ bifacial cells able to capture incident photons from all angles; 
 Do not degrade at elevated temperature. 

 
Design, synthesis and properties of organic and inorganic cromophores for DSSCs 
 
Among the components of DSSC, the photosensitizer is the key constituent, playing an essential 
role in the DSSC efficiency. The most encountered types of cromophores, used as light absorbers in 
manufacturing DSSCs, are: 
 

 Metal complexes [101]; 
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 Porphyrines and phthalocyanines [107]; 
 Natural dyes [108]; 
 Synthetic, metal-free, organic dyes [104, 109, 110]. 

 
Metal complexes 
 
Metal complexes have received a considerable attention in the last years. Their ability to harvest 
energy from a broad range of light, chemical stability, favorable photovoltaic properties are of the 
few attractive features of this type of sensitizers. From a structural point of view, metal complex 
sensitizers consist of a central metallic ion and two types of ligands: ancillary and anchoring. 
The metal-to-ligand charge transfer (MLCT) process is responsible for metal complexes light-
absorption capability in the visible part of the spectrum. For this reason, the central metal ion has a 
cardinal importance in achieving superior power conversion efficiencies [111]. Anchoring ligands 
are required to bond the dye to the surface of the semiconducting metal oxide nanoparticles and to 
further facilitate the injection of excited electrons in the conduction band of TiO2 [112]. Ancillary 
ligands, tailored with different aliphatic chains and/or aromatic units, are important for tuning the 
electrochemical and photo physical properties of the sensitizer and, thus, for improving the overall 
photovoltaic performance of the DSSC [113]. 
Among the metal complexes employed as cromophores, Ru complexes are the most efficient ones. 
DSSCs using different Ru-based sensitizers, such as N3, N719 and Black dye (Figs. 6.21-23), showed 
experimental efficiencies up to 11% under standard measurement conditions [114-118]. For all, the 
carboxylic group is the anchoring ligand. 
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FIGURE 6.21 
The structure of N3 

 
FIGURE 6.22  
The structure of N719 
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FIGURE 6.23  
The structure of Black dye 
 
At the same time, different Ru–based sensitizers with other anchoring ligands, such as sulfonic acid, 
phosphonic acid and catechol, were also synthesized. However, their performance are inferior to 
those showed by sensitizers using carboxylic acid groups as anchoring ligans [119-123]. 
Recently, several Ru-based sensitizers were synthesized using different types of ancillary ligands, 
like: 
 

 Bipyridyls containing different substituents, such as alkyl, alkoxyl, triarylamine[124, 125]; 
 1, 10 phenantroline [126]; 
 Dipyridylamine [127]; 
 Pyridyl-benzimidazole [128]; 
 Tridentate ancillary ligands, such as 2,6-bis(1-methylbenzimidazol-2-yl)pyridine (bmipy) 

[129]. 
 

Generally speaking, despite exhibiting superior performance, Ru-based photosensitizers suffer from 
scarcity, high cost, toxicity and limited absorption in the near- infrared region of the solar spectrum. 
Due to these limitations, other options had to be taken into consideration [129]. Complexes of 
transition metals, like Os[130], Co[131], Fe [132], Cu[133], Re[134], were synthesized and tested as 
photosensitizers. 
 
Porphyrins and phthalocyanines 
 
Porphyrins 
 
Porphyrins are one of the most frequently used sensitizers in DSSCs [135-137].Their most attractive 
features are [138-141]: 
 

 Synthesis is relatively simple and cheap; 
 They exhibit good chemical, photo- and thermal stability; 
 They have tunable electrochemical and optical properties (color, transparency) obtained 

through rational synthesis; 
 They are eco-friendly; 
 They have intense spectral response bands in the near IR-region. 
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Changing the coordinating metal center, the number of porphirin units, the anchor between the 
porphyrin core and the inorganic semiconductor or the type of substituents on the molecular 
structure are strategic alternatives in order to manipulate and optimize the properties of the 
porphyrins and thus to improve the overall performance of DSSCs employing them [142]. Tetrakis 
(4-carboxyphenyl)-porphyrinato]zinc (II) was the first porphyrin used for the sensitization of 
nanocrystalline TiO2 [143]. In the last years, several porphyrins - as free bases - and 
metalloporphyrins with different metal centers (including zinc and copper) were synthesized and 
tested as sensitizers for DSSCs [144]. Wang [145], Campbell and co-workers [146] developed 
several porphirin sensitizers by performing the functionalization of the β-position of the meso-
tetraphenylporphyrins with different functional group in order to extend the conjugated π system. 
This type of functionalization proved to be an effective tool to optimize the porphyrin photoelectric 
properties, and, consequently, to improve the efficiency of the DSSC. 
Different anchoring groups, like –COOH and -PO3H2, were employed to assemble porphyrins 
molecules onto a metal oxide surface. Porphyrins with a carboxylic binding group exhibited better 
efficiencies than those with phosphonate anchoring group. The results indicated that the number 
and position of the anchoring groups on the porphyrin moieties have a key role on the photovoltaic 
performance [144]. 
Recently, Liu and co-workers synthesized several novel porphyrins dyes with the push-pull 
framework. They demonstrated that different thiophene derivatives can act as conjugated bridge 
to broaden the absorption of the porphyrin [147]. Wu and co-workers [141] synthesized novel 
donor -π- acceptor porphyrins dyes (coded YD14-YD17, Fig. 6.24-27), containing diarylamino and 
/or triphenylamino moieties in different meso-positions. YD14 and YD17 exhibit a power conversion 
efficiency of 7%. New donor -π- acceptor porphyrins with cyanoacrylic acid moiety as electron 
acceptor were also synthesized [148]. Mathew and co-workers reported a new molecularly 
engineered porphyrin dye, coded SM315, which exhibited a remarkable power conversion 
efficiency of 13% [149]. 
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FIGURE 6.24 
The structure of YD14 
 

FIGURE 6.25  
The structure of YD15 
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FIGURE 6.26  
The structure of YD16 

FIGURE 6.27  
The structure of YD17 

  
Phtalocyanines 
 
Phthalocyanine derivatives, which have a similar structure to porphyrin (Figs. 6.28 - 29) are used as 
sensitizers in DSSCs due to their favorable electrochemical, thermal and photochemical properties 
[150, 151]. However, these sensitizers have two important drawbacks: 
 

 Very poor solubility; 
 Pronounced tendency to aggregate on the TiO2 surface [104]. 

 
To date, several phtalocyanines dyes have been synthesized and used as sensitizers in DSSC: Zn–
free (Fig. 6.28), phtalocyanines with ester groups [150], unsymmetrical zinc phtalocyanines [152] 
(Fig. 6.29), metal phtalocyanines containing axial ligands with a carboxyl group [153]. 
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FIGURE 6.28  
Zn-free phtalocyanine with metoxy group 

FIGURE 6.29  
Zn (II) – phtalocyanine with carboxyl groups 
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Natural dyes 
 
Natural dyes and their derivatives are attractive solutions as sensitizers for environmentally friendly 
DSSCs, since they are usually non-toxic, fully biodegradable, renewable, easily available and cost 
effective [154]. As a consequence, a lot of efforts have been devoted to find appropriate natural 
dyes yielding high energy conversion efficiency [155-158]. Natural dyes can be easily extracted 
from fruit, leaves, flowers and algae. The availability of their source and extraction method is 
reflected in their reduced price [107]. In many cases, combination of dyes work more efficiently so 
it is still debatable how much purification of the plant extract is needed. 
Different vegetables dyes, like carotenoids [159, 160], betalaines [157, 161], anthocyanins [162-
165], chlorophylls [166-168], were used as sensitizeres in DSSCs. Bixin, an apocarotenoid found in 
annatto (Fig. 6.30) [169] and delphinidin (Fig. 6.31), a primary plant pigment which belongs to the 
class of anthocyanidins [170], are other two well- known examples of natural dyes employed as 
sensitizers. 
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FIGURE 6.30  
The structure of bixin 

FIGURE 6.31 
The structure of delphinidin 

 
Unlike the metal complexes, porphyrins, phtalocyanines and synthetic organic dyes, for which the 
desired photoelectrical and absorption properties can be tuned by changing the ligands and/or the 
central metal atom or by functionalization, the process of tuning is more difficult for vegetable dyes. 
For this reason, the concentration of the dye, the pH and type of electrolyte, the type and size of 
the metal oxide semiconductor and the soaking time become important parameters in order to 
achieve superior solar power conversion [171-173]. Despite the benefits listed above, the efficiency 
of the DSSCs which use natural dyes as sensitizers is still by a factor of 3–4 lower than those 
employing synthetic dyes. 
 
Synthetic dyes 
 
Organic dyes are a viable alternative to noble metal complexes sensitizers and exhibit many 
attractive features: 
 

 Tunable electrochemical and optical properties through chemical synthesis and 
appropriate functionalization; 

 The molar extinction coefficient of organic synthetic dyes are substantially higher than 
those of metal complexes; 

 Versatile and relatively low-cost synthesis; 
 Less environmental issues compared to metal complexes [174-176]. 

 
Many of these sensitizers are of push–pull design featuring an electron-rich (donor-D) and an 
electron-poor (acceptor-A) moiety, connected through a π- conjugated bridge (D-π -A). Coumarine 
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[177-181], triphenylamine [182 -185], indoline [186, 187], carbazole [188 -190] are widely used as 
donor moieties in the synthesis of dyes, while cyanoacrylic acid acts as electron acceptor unit. An 
example of a synthesis employing an organic dye (dihexyloxy-substituted triphenylamine-based 
organic dye, coded BCS-1) is depicted in Fig. 6.32, below [191]: 
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FIGURE 6.32  
Synthesis route of BCS-1 organicdye 
1: 4-bromo-N,N-bis(4-(hexyloxy)phenyl)aniline; 
2: 5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)furan-2-carbaldehyde; 
3: N,N-bis(4-hexyloxy-phenyl)-N-(4-(5-(2-(3-hexylthiophen-2-yl)vinyl)furan-2-yl)phenyl-aniline); 
4: 3-{5-[2-(5-{4-[bis(4-hexyloxy-phenyl)-amino]-phenyl}-furan-2-yl)-vinyl]-3-hexyl-thiophen-2-yl} 
-2-carbaldehyde; BCS-1: 3-{5-[2-(5-{4-[bis(4-hexyloxyphenyl)-amino]-phenyl}-furan-2-yl)-vinyl] 
-3-hexyl-thiophen-2-yl}-2-cyanoacrylic acid 
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Besides the groups of organic dyes discussed above, other types of donor electron moieties, such 
as phenoxazines (Fig. 6.33) [192, 193] and phenothiazines [194] (Fig. 6.34), were used in the design 
of sensitizers. 
 

S
S

CN

COOH

N

O

(  ) n

n =  4 - 10
 

S
S

CN

COOH

N

O

(  ) n

n =  4 - 10

 

O

N

O

S COOH

CN

 



Science and applications of Tailored Nanostructures  110 

N

O

S S

NC COOH

O

 

N

O

S S

NC COOH

O

N

O

S S

NC COOH

O

 
 
FIGURE 6.33  
Different structures of dyes employing phenoxazine unit as electron donor moiety 
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FIGURE 6.34  
Different structures of dyes employing phenothiazine unit as electron donor moiety 
 
An example of synthesis of a dye using phenoxazine unit as electron donor moiety is presented in 
Fig. 6.35, below [193]. 
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FIGURE 6.35  
Synthesis of a dye employing phenoxazine unit as electron donor moiety 
 
The structure of the conjugated bridge can contains different functional units, such as 
phenylenevinylene, benzothiadiazole, thiophene, dithienothiophene, furane, EDOT, selenophene 
[174, 195]. The immobilization of the adsorbing sensitizers on the surface of the semiconducting 
metal oxide enables electron injection and thus has a paramount importance for building an 
efficient DSSC [111]. 
Carboxylic acid (-COOH) is the most commonly used anchoring group for sensitizers [196]. Actually, 
all the dyes structures depicted above contain cyanoacrylic acid, which acts as anchoring and 
electron acceptor unit. Functional derivatives of carboxylic acid, like acid chlorides, ester, 
anhydrides, amides, have also been reported as anchoring groups. Examples of other anchoring 
groups are phosphonic acid [197], silanol [198], hydroxamate [199], pyridine, tetracyanate, 
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perylene, 2-hydroxylbenzonitrile, 8-hydroxylquinoline, pyridine-N-oxide, BON acid, catechol, 
hydroxamate, sulfonic acid, acetylacetanate, rhodanine, and salicylic acid substituents [111, 200]. 
The appropriate design of the sensitizers has a crucial importance for the overall efficiency of the 
DSSC. In the last years, a lot of effort was dedicated to understand the connection between the 
efficiency of the solar cell and the global hardness of the sensitizers [201-203]. 
 
Wideband-gap semiconductors 
 
Titania is by far the metal-oxide most commonly used as n-type semiconductor in DSSCs. It has 
been widely accepted that the efficiency of the electron injection and light harvesting in DSSCs 
strongly depends on the morphology, size and structure of TiO2. Thus, different types of TiO2, such 
as nanotubes [204], nanorods, nanowires, nanoparticles, nanobowls, nanosheets [104], 
mesoporous [205] were used as photo anodes in order to improve the performances of DSSCs. 
Hydrolysis of a titanium (IV) alkoxide in acid or base catalysis, followed by hydrothermal growth 
and crystallization, is the most widely used synthesis method for TiO2 employed in DSSCs [206]. 
Recently, it has been suggested that capability of a sensitizer to inject electrons into a DSSC TiO2 
anode depends on the surface crystallographic plane of the TiO2 nanoparticles. For some 
chromophores, at least, the short circuit current (ISC) can be maximized when the TiO2 
nanoparticulate layer comprised in a DSSC has a higher percentage of {100} facets relative to {101} 
and {001} facets [207]. 
ZnO is another metal oxide semiconductor used in DSSC applications. Highly crystalline wurtzite 
structures, such as nanoparticles, tetrapods, nanorods, nanotubes, nanoflowers, nanosheets, 
nanowires, were reported as n-type semiconductor for DSSC technology [104, 208, 209]. At the 
same time, SnO2 [210], SrTiO3 and Nb2O5 [211] were also shown to successfully act as 
semiconductors in DSSCs. 
 
Electrolytes and hole conductors 
 
The electrolyte is one of the most important components in DSSCs technology. It acts as a medium 
to transfer electrons from the counter electrode to the oxidized dye during DSSC operation [212]. 
The solvent used for the design of redox electrolytes must fulfill the following criteria: 
 

 It should be a suitable solvent for redox couple components and different additives; 
 It should exhibit chemical, thermal, optical and interfacial stability; 
 It should have low viscosity; 
 It should be compatible with the sealing material to avoid losses by evaporation [104, 

213]; 
 It should not cause desorption and degradation of the sensitized dye; 
 It should exhibit low toxicity; 
 It should not exhibit absorption in the range of visible light. 

 
Organic carbonates (such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene 
carbonate), different nitriles (like acetonitrile, valeronitrile, glutaronitrile, 3-methoxy- propionitrile), 
and protic solvents (such as water, ethanol, N-Methylpirrolydone) are the most commonly 
employed solvents for electrolytes in DSSCs. The iodide–triiodide (I3

−/I−) electrolyte has been widely 
used as redox system because of its favorable properties [214]. Different alternative electrolytes 
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have been investigated, including Co (II)/Co(III) polypyridyl complex, ferrocene/ferrocenium 
(Fc/Fc+) couple, Cu(I)/Cu(II) complex, Br–/Br2 [215-223].  
Due to their outstanding properties (high chemical and thermal stability, low vapor pressure, non - 
flammability and high ionic conductivity), ionic liquids are employed in DSSCs both as solvents and 
sources of iodide [224-228]. Methyl-hexyl-imidazoliumiodide (MHImI) 1-propargyl-3-
methylimidazolium iodide, bis (imidazolium) iodides1-ethyl-1-methylpyrrolidinium) iodide are some 
examples of such ionic liquids [229-232]. 
Additives play an important role in enhancing the performance of DSSCs by modifying of redox 
couple potential. Examples of additives that have been tested in DSSC include 4-tert-butylpyridine, 
4-ethoxy-2-methylpyridine, 1-methyl-benzimidazole, different pyrimidines, quinolines, and 
alkylpyridines [233-235]. 
An alternative to the iodide/triiodide redox system is an organic and inorganic hole conductors, 
such as OMeTAD, spiro-OMeTAD, polyaniline, pentacene, CUI, CuSCN, etc. [236-242]. 
 
Counter electrodes 
 
The counter electrode (CE) has the role of collecting electrons from the external circuit being used 
for the regeneration of the electrolyte. Platinum is one of the most popular CE materials due to its 
high electrocatalytic activity [243, 244]. Other noble metals, like Au and Ag, were also used as 
counter electrodes. Noble metals-based CE corrosion in liquid electrolyte and their elevated cost 
are two major concerns. For this reason, other possible replacing materials have been extensively 
studied: 
 

 Carbon-based materials, such as porous carbon, carbon nanotubes (CNTs), graphene, or 
composites: porous carbon & CNTs [132], CNTs & graphene nano-ribbons [245-247]; 

 Sulfides, like CoS2, CuInS2, Cu2ZnSnS4 [248]; 
 Conductive polymers, such as poly (3,4-ethylenedioxythiophene polypyrrole and 

polyaniline) [249]. 
 
 

Comparison between QDSSCs and DSSCs, conclusions and future 
prospects 
 
Dye sensitized solar cells and quantum dot sensitized solar cells are two emerging technologies in 
the field of solar cell research. A comparison performed between materials used for manufacturing 
these types of solar cells and performance reveals some interesting aspects. In this section, the 
main aspects of the technologies will be briefly summarized and compared. 
 
Wide–bandgap semiconductor 
TiO2 and ZnO are widely used in both QDSSCs and DSSCs. Nanotubes, nanorods, nanowires, 
nanoparticles, nanobowls, nanosheets, mesoporous are typical nanostructures. 
 
Sensitizer 
Quantum dots act as sensitizers in QDSSCs. Many types of QDs, as CdS, CdTe or core–shell 
semiconducting nanocrystals (CdS/HgS, CdS/CdSe and ZnSe/CdSe) were employed. Their synthesis 
is versatile, low–cost and can adjust bandgaps over a broad spectral range. One of the most used 



Science and applications of Tailored Nanostructures  118 

method to anchor the QDs to the surface of TiO2 is to functionalize it with bifunctional linkers. As 
indicated above, the HSAB principle can be a valuable tool in order to choose the right QDs -
bifunctional ligand tandems. 
Metal complexes, porphyrins and phthalocyanine dyes, synthetic metal-free organic dyes act as 
light absorbers for DSSCs. Except natural dyes, all the dyes can be properly functionalized in order 
to tune the optical and electrochemical properties of sensitizers. At the same time, their synthesis 
versatile and relatively low-cost. 
As opposed to QDs, the molecular structures of dye include the anchors for immobilization to 
TiO2.The advantage of QDs over traditional dyes is their very high extinction coefficients. 
 
Electrolyte/ hole transport 
The most commonly used electrolyte in QDSSCs is sulfide/polysulfide (S2-/ Sn

2-) aqueous solution, 
while for DSSCs is the redox couple iodide–triiodide (I3

−/I−). For both technologies, a lot of attention 
is paid for finding solid materials, suitable to replace the liquid electrolyte. 
 
Counter electrode 
Platinized layers are usually employed for both QDSSCs and DSSCs. 
Low efficiency (11, 9 % is the maximum measured efficiency for DSSCs, while for QDSCs top value is 
11.6%) and low stability are the most important challenges for the commercial deployment of both 
technologies. These parameters depend on many parameters. A trade-off between them need to 
be performed to enhance the performance of both QDSSCs and DSSCs.  
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